Multiplication and Compact-friendly Operators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-06

AUTHORS

Y. A. Abramovich, C. D. Aliprantis, O. Burkinshaw

ABSTRACT

During the last few years the authors have studied extensively the invariant subspace problem of positive operators; see [6] for a survey of this investigation. In [4] the authors introduced the class of compact-friendly operators and proved for them a general theorem on the existence of invariant subspaces. It was then asked if every positive operator is compact-friendly. In this note, we present an example of a positive operator which is not compact-friendly but which, nevertheless, has a non-trivial closed invariant subspace. In the process of presenting this example, we also characterize the multiplication operators that commute with non-zero finite-rank operators. We show, among other things, that a multiplication operator Mϕ commutes with a non-zero finite-rank operator if and only the multiplier function ϕ is constant on some non-empty open set. More... »

PAGES

171-180

References to SciGraph publications

Journal

TITLE

Positivity

ISSUE

2

VOLUME

1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1009781922898

DOI

http://dx.doi.org/10.1023/a:1009781922898

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030560742


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Abramovich", 
        "givenName": "Y. A.", 
        "id": "sg:person.013761237533.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013761237533.23"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Aliprantis", 
        "givenName": "C. D.", 
        "id": "sg:person.014135050231.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014135050231.02"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Burkinshaw", 
        "givenName": "O.", 
        "id": "sg:person.011747227346.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747227346.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01162028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002687001", 
          "https://doi.org/10.1007/bf01162028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1994.1099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010207711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00046631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011759394", 
          "https://doi.org/10.1007/bf00046631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00046631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011759394", 
          "https://doi.org/10.1007/bf00046631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1993.1097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015730651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(80)90073-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028977956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1995-1264812-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042146721"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-06", 
    "datePublishedReg": "1997-06-01", 
    "description": "During the last few years the authors have studied extensively the invariant subspace problem of positive operators; see [6] for a survey of this investigation. In [4] the authors introduced the class of compact-friendly operators and proved for them a general theorem on the existence of invariant subspaces. It was then asked if every positive operator is compact-friendly. In this note, we present an example of a positive operator which is not compact-friendly but which, nevertheless, has a non-trivial closed invariant subspace. In the process of presenting this example, we also characterize the multiplication operators that commute with non-zero finite-rank operators. We show, among other things, that a multiplication operator M\u03d5 commutes with a non-zero finite-rank operator if and only the multiplier function \u03d5 is constant on some non-empty open set.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1009781922898", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134502", 
        "issn": [
          "1385-1292", 
          "1572-9281"
        ], 
        "name": "Positivity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Multiplication and Compact-friendly Operators", 
    "pagination": "171-180", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91969501a8c3d55baef2a7258b793b8d8042318405a343c9ba3547cd13e2963f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1009781922898"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030560742"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1009781922898", 
      "https://app.dimensions.ai/details/publication/pub.1030560742"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1009781922898"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1009781922898'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1009781922898'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1009781922898'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1009781922898'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1009781922898 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5321383e648c4f72a900a299e7f8dca3
4 schema:citation sg:pub.10.1007/bf00046631
5 sg:pub.10.1007/bf01162028
6 https://doi.org/10.1006/jfan.1993.1097
7 https://doi.org/10.1006/jfan.1994.1099
8 https://doi.org/10.1016/0022-1236(80)90073-7
9 https://doi.org/10.1090/s0002-9939-1995-1264812-5
10 schema:datePublished 1997-06
11 schema:datePublishedReg 1997-06-01
12 schema:description During the last few years the authors have studied extensively the invariant subspace problem of positive operators; see [6] for a survey of this investigation. In [4] the authors introduced the class of compact-friendly operators and proved for them a general theorem on the existence of invariant subspaces. It was then asked if every positive operator is compact-friendly. In this note, we present an example of a positive operator which is not compact-friendly but which, nevertheless, has a non-trivial closed invariant subspace. In the process of presenting this example, we also characterize the multiplication operators that commute with non-zero finite-rank operators. We show, among other things, that a multiplication operator Mϕ commutes with a non-zero finite-rank operator if and only the multiplier function ϕ is constant on some non-empty open set.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N4143b3238be34fe695838de2d91c6858
17 Na1ddbe35397443d38ec383783fff6d20
18 sg:journal.1134502
19 schema:name Multiplication and Compact-friendly Operators
20 schema:pagination 171-180
21 schema:productId N849852e9994a422d999c0db2c0240e67
22 Nb66fde6961d64336b189bd6b2da2a7e6
23 Nbb1d4b8c2f2f460b91304e7348a63fa4
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030560742
25 https://doi.org/10.1023/a:1009781922898
26 schema:sdDatePublished 2019-04-10T23:21
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N28bc94e1e8fb41a3a3accf0948295b26
29 schema:url http://link.springer.com/10.1023/A:1009781922898
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N122880904dc04122ba5dcd88d8d2e592 rdf:first sg:person.014135050231.02
34 rdf:rest Nf78e34c3eb884032a8b5d78ab8fbea52
35 N28bc94e1e8fb41a3a3accf0948295b26 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N4143b3238be34fe695838de2d91c6858 schema:volumeNumber 1
38 rdf:type schema:PublicationVolume
39 N5321383e648c4f72a900a299e7f8dca3 rdf:first sg:person.013761237533.23
40 rdf:rest N122880904dc04122ba5dcd88d8d2e592
41 N849852e9994a422d999c0db2c0240e67 schema:name readcube_id
42 schema:value 91969501a8c3d55baef2a7258b793b8d8042318405a343c9ba3547cd13e2963f
43 rdf:type schema:PropertyValue
44 Na1ddbe35397443d38ec383783fff6d20 schema:issueNumber 2
45 rdf:type schema:PublicationIssue
46 Nb66fde6961d64336b189bd6b2da2a7e6 schema:name dimensions_id
47 schema:value pub.1030560742
48 rdf:type schema:PropertyValue
49 Nbb1d4b8c2f2f460b91304e7348a63fa4 schema:name doi
50 schema:value 10.1023/a:1009781922898
51 rdf:type schema:PropertyValue
52 Nf78e34c3eb884032a8b5d78ab8fbea52 rdf:first sg:person.011747227346.83
53 rdf:rest rdf:nil
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1134502 schema:issn 1385-1292
61 1572-9281
62 schema:name Positivity
63 rdf:type schema:Periodical
64 sg:person.011747227346.83 schema:familyName Burkinshaw
65 schema:givenName O.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747227346.83
67 rdf:type schema:Person
68 sg:person.013761237533.23 schema:familyName Abramovich
69 schema:givenName Y. A.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013761237533.23
71 rdf:type schema:Person
72 sg:person.014135050231.02 schema:familyName Aliprantis
73 schema:givenName C. D.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014135050231.02
75 rdf:type schema:Person
76 sg:pub.10.1007/bf00046631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011759394
77 https://doi.org/10.1007/bf00046631
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01162028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002687001
80 https://doi.org/10.1007/bf01162028
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1006/jfan.1993.1097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015730651
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1006/jfan.1994.1099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010207711
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0022-1236(80)90073-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028977956
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1090/s0002-9939-1995-1264812-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042146721
89 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...