A Tutorial on Support Vector Machines for Pattern Recognition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-06

AUTHORS

Christopher J.C. Burges

ABSTRACT

The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization performance is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired by these arguments are also presented. We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that the reader will find that even old material is cast in a fresh light. More... »

PAGES

121-167

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1009715923555

DOI

http://dx.doi.org/10.1023/a:1009715923555

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042048349


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Bell Laboratories, Lucent Technologies, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burges", 
        "givenName": "Christopher J.C.", 
        "id": "sg:person.015522010763.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015522010763.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/neco.1992.4.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007421220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-61510-5_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009128808", 
          "https://doi.org/10.1007/3-540-61510-5_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-61510-5_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015690232", 
          "https://doi.org/10.1007/3-540-61510-5_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016907700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019671707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(80)90172-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023079072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1977-0428694-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039637161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00013831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047784398", 
          "https://doi.org/10.1007/pl00013831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.650102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061229999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0801008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062854121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.6.1.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064707482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1997.609310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093529535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nnsp.1997.622433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093652497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nnsp.1997.622408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095767720"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-06", 
    "datePublishedReg": "1998-06-01", 
    "description": "The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization performance is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired by these arguments are also presented. We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that the reader will find that even old material is cast in a fresh light.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1009715923555", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041853", 
        "issn": [
          "1384-5810", 
          "1573-756X"
        ], 
        "name": "Data Mining and Knowledge Discovery", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "A Tutorial on Support Vector Machines for Pattern Recognition", 
    "pagination": "121-167", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c84c46cc5ee29f6f90b0e4f5b4e2bf684f8cdd944b947a9108dbe171a6ae2ebc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1009715923555"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042048349"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1009715923555", 
      "https://app.dimensions.ai/details/publication/pub.1042048349"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1009715923555"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1009715923555'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1009715923555'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1009715923555'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1009715923555'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1009715923555 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nc9b348628e354d39af1fbbb5e15ff6be
4 schema:citation sg:pub.10.1007/3-540-61510-5_12
5 sg:pub.10.1007/3-540-61510-5_45
6 sg:pub.10.1007/bf00994018
7 sg:pub.10.1007/pl00013831
8 https://doi.org/10.1016/0024-3795(80)90172-x
9 https://doi.org/10.1090/s0025-5718-1977-0428694-0
10 https://doi.org/10.1109/78.650102
11 https://doi.org/10.1109/cvpr.1997.609310
12 https://doi.org/10.1109/nnsp.1997.622408
13 https://doi.org/10.1109/nnsp.1997.622433
14 https://doi.org/10.1137/0801008
15 https://doi.org/10.1162/089976698300017269
16 https://doi.org/10.1162/089976698300017467
17 https://doi.org/10.1162/neco.1992.4.1.1
18 https://doi.org/10.1287/ijoc.6.1.32
19 schema:datePublished 1998-06
20 schema:datePublishedReg 1998-06-01
21 schema:description The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization performance is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired by these arguments are also presented. We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that the reader will find that even old material is cast in a fresh light.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N2e83cd94f77a415aacc4205c6fb7f0aa
26 N6f2da7eb9c144e78af7046995a90056e
27 sg:journal.1041853
28 schema:name A Tutorial on Support Vector Machines for Pattern Recognition
29 schema:pagination 121-167
30 schema:productId N08997be27c754a75b53a04d853f70bd2
31 N8a18f55993b742b0987da2c5ec4ceacf
32 Nd232cbec54d54e09bddaf9279a2b6500
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042048349
34 https://doi.org/10.1023/a:1009715923555
35 schema:sdDatePublished 2019-04-11T00:21
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Ncde7ac027fdc43bea753ba3d69a3c2bf
38 schema:url http://link.springer.com/10.1023%2FA%3A1009715923555
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N08997be27c754a75b53a04d853f70bd2 schema:name doi
43 schema:value 10.1023/a:1009715923555
44 rdf:type schema:PropertyValue
45 N2e83cd94f77a415aacc4205c6fb7f0aa schema:issueNumber 2
46 rdf:type schema:PublicationIssue
47 N3ff8433fd15945a9a1c5d3b5f8ed6798 schema:name Bell Laboratories, Lucent Technologies, USA.
48 rdf:type schema:Organization
49 N6f2da7eb9c144e78af7046995a90056e schema:volumeNumber 2
50 rdf:type schema:PublicationVolume
51 N8a18f55993b742b0987da2c5ec4ceacf schema:name readcube_id
52 schema:value c84c46cc5ee29f6f90b0e4f5b4e2bf684f8cdd944b947a9108dbe171a6ae2ebc
53 rdf:type schema:PropertyValue
54 Nc9b348628e354d39af1fbbb5e15ff6be rdf:first sg:person.015522010763.41
55 rdf:rest rdf:nil
56 Ncde7ac027fdc43bea753ba3d69a3c2bf schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nd232cbec54d54e09bddaf9279a2b6500 schema:name dimensions_id
59 schema:value pub.1042048349
60 rdf:type schema:PropertyValue
61 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
62 schema:name Information and Computing Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information Systems
66 rdf:type schema:DefinedTerm
67 sg:journal.1041853 schema:issn 1384-5810
68 1573-756X
69 schema:name Data Mining and Knowledge Discovery
70 rdf:type schema:Periodical
71 sg:person.015522010763.41 schema:affiliation N3ff8433fd15945a9a1c5d3b5f8ed6798
72 schema:familyName Burges
73 schema:givenName Christopher J.C.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015522010763.41
75 rdf:type schema:Person
76 sg:pub.10.1007/3-540-61510-5_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015690232
77 https://doi.org/10.1007/3-540-61510-5_12
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/3-540-61510-5_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009128808
80 https://doi.org/10.1007/3-540-61510-5_45
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
83 https://doi.org/10.1007/bf00994018
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/pl00013831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047784398
86 https://doi.org/10.1007/pl00013831
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0024-3795(80)90172-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023079072
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1090/s0025-5718-1977-0428694-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039637161
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1109/78.650102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061229999
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1109/cvpr.1997.609310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093529535
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1109/nnsp.1997.622408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095767720
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1109/nnsp.1997.622433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093652497
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1137/0801008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062854121
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1162/089976698300017269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016907700
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1162/089976698300017467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019671707
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1162/neco.1992.4.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007421220
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1287/ijoc.6.1.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707482
109 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...