Accumulation of a thermostable endo-1,4-β-D-glucanase in the apoplast of Arabidopsis thaliana leaves View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-02

AUTHORS

Matthew T. Ziegler, Steven R. Thomas, Kathleen J. Danna

ABSTRACT

Plant biomass, the most abundant renewable resource on earth, is a potential source of fermentable sugars for production of alternative transportation fuels and other chemicals. Bioconversion of plant biomass to fermentable glucose involves enzymatic hydrolysis of cellulose, a major polysaccharide constituent. Because commercially available microbial cellulases are prohibitively expensive for bioethanol processes, we have investigated the feasibility of producing these enzymes in plants as a low-cost, potentially high-volume alternative to traditional production methods. We have successfully expressed the catalytic domain of a thermostable (Topt=81 °C) endo-1,4-β-D-glucanase from the eubacterium, Acidothermus cellulolyticus, in the apoplast of tobacco BY-2 suspension cells and leaves of Arabidopsis thaliana plants. The apoplast-targeting cassette designed for this work consists of the cauliflower mosaic virus 35S promoter, the tobacco mosaic virus Ω translational enhancer, the sequence encoding the tobacco Pr1a signal peptide, and the polyadenylation signal of nopaline synthase. Recombinant E1 catalytic domain was targeted to the ER by the signal peptide and secreted into the apoplast via the default pathway. Secretion of the enzyme did not detectably affect the growth rate of transgenic BY-2 cells, although the protein was enzymatically active at elevated temperatures. Similarly, transgenic plants exhibited no abnormal phenotypes correlating with expression of the enzyme. Close agreement between independent immunochemical and activity-based assays indicates that the enzyme accumulated to concentrations up to 26% of the total soluble protein in leaves of primary A. thaliana transformants. The amount of functional endoglucanase produced illustrates that plants can accumulate very large quantities of enzyme for commercial biomass conversion. More... »

PAGES

37-46

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1009667524690

DOI

http://dx.doi.org/10.1023/a:1009667524690

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016435540


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Molecular, Cellular and Developmental Biology, University of Colorado, 80309-0347, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziegler", 
        "givenName": "Matthew T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Renewable Energy Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.419357.d", 
          "name": [
            "Biotechnology Center for Fuels and Chemicals, National Renewable Energy Laboratory, 1617 Cole Boulevard, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Steven R.", 
        "id": "sg:person.01006375424.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006375424.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Molecular, Cellular and Developmental Biology, University of Colorado, 80309-0347, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danna", 
        "givenName": "Kathleen J.", 
        "id": "sg:person.01055427303.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055427303.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.93.8.3487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004035206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.100.1.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005327172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0968-0004(90)90303-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006042719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0968-0004(90)90303-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006042719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(88)60114-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007876284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02941803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008063846", 
          "https://doi.org/10.1007/bf02941803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02941803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008063846", 
          "https://doi.org/10.1007/bf02941803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(88)60107-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013706596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(19971205)56:5<473::aid-bit1>3.0.co;2-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017887176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/15.8.3257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018539462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.251.4999.1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022014021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.91.22.10445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024001572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.6.2122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025620211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007444100898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031083035", 
          "https://doi.org/10.1023/a:1007444100898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0195-63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033427699", 
          "https://doi.org/10.1038/nbt0195-63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02933425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034433652", 
          "https://doi.org/10.1007/bf02933425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02933425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034433652", 
          "https://doi.org/10.1007/bf02933425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-9452(93)90142-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034568893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-5242-6_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040355729", 
          "https://doi.org/10.1007/978-94-011-5242-6_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2911(08)60143-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047082497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.109.4.1199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051145678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.91.15.7301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051513641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj2930781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051622856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj2930781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051622856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(92)16037-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052317633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.79.2.568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052662880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-0951-9_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053032124", 
          "https://doi.org/10.1007/978-94-009-0951-9_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-0951-9_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053032124", 
          "https://doi.org/10.1007/978-94-009-0951-9_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/mpmi.1997.10.5.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060079781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-36-3-435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060348077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.250.4983.959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062541055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.261.5124.1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062546776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8303295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062654568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082860796", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bk-1995-0618.ch009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089360878"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-02", 
    "datePublishedReg": "2000-02-01", 
    "description": "Plant biomass, the most abundant renewable resource on earth, is a potential source of fermentable sugars for production of alternative transportation fuels and other chemicals. Bioconversion of plant biomass to fermentable glucose involves enzymatic hydrolysis of cellulose, a major polysaccharide constituent. Because commercially available microbial cellulases are prohibitively expensive for bioethanol processes, we have investigated the feasibility of producing these enzymes in plants as a low-cost, potentially high-volume alternative to traditional production methods. We have successfully expressed the catalytic domain of a thermostable (Topt=81 \u00b0C) endo-1,4-\u03b2-D-glucanase from the eubacterium, Acidothermus cellulolyticus, in the apoplast of tobacco BY-2 suspension cells and leaves of Arabidopsis thaliana plants. The apoplast-targeting cassette designed for this work consists of the cauliflower mosaic virus 35S promoter, the tobacco mosaic virus \u03a9 translational enhancer, the sequence encoding the tobacco Pr1a signal peptide, and the polyadenylation signal of nopaline synthase. Recombinant E1 catalytic domain was targeted to the ER by the signal peptide and secreted into the apoplast via the default pathway. Secretion of the enzyme did not detectably affect the growth rate of transgenic BY-2 cells, although the protein was enzymatically active at elevated temperatures. Similarly, transgenic plants exhibited no abnormal phenotypes correlating with expression of the enzyme. Close agreement between independent immunochemical and activity-based assays indicates that the enzyme accumulated to concentrations up to 26% of the total soluble protein in leaves of primary A. thaliana transformants. The amount of functional endoglucanase produced illustrates that plants can accumulate very large quantities of enzyme for commercial biomass conversion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1009667524690", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1114043", 
        "issn": [
          "1380-3743", 
          "1572-9788"
        ], 
        "name": "Molecular Breeding", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Accumulation of a thermostable endo-1,4-\u03b2-D-glucanase in the apoplast of Arabidopsis thaliana leaves", 
    "pagination": "37-46", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4e4f291dfdc69ca97d23f5c2d18bce87428e8916b444b91259bbe5837252ce8b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1009667524690"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016435540"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1009667524690", 
      "https://app.dimensions.ai/details/publication/pub.1016435540"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1009667524690"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1009667524690'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1009667524690'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1009667524690'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1009667524690'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1009667524690 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N22db03109bd94b36852be58351d9a2d7
4 schema:citation sg:pub.10.1007/978-94-009-0951-9_3
5 sg:pub.10.1007/978-94-011-5242-6_2
6 sg:pub.10.1007/bf02933425
7 sg:pub.10.1007/bf02941803
8 sg:pub.10.1023/a:1007444100898
9 sg:pub.10.1038/nbt0195-63
10 https://app.dimensions.ai/details/publication/pub.1082860796
11 https://doi.org/10.1002/(sici)1097-0290(19971205)56:5<473::aid-bit1>3.0.co;2-f
12 https://doi.org/10.1016/0076-6879(88)60107-8
13 https://doi.org/10.1016/0076-6879(88)60114-5
14 https://doi.org/10.1016/0076-6879(92)16037-k
15 https://doi.org/10.1016/0168-9452(93)90142-m
16 https://doi.org/10.1016/0968-0004(90)90303-s
17 https://doi.org/10.1016/s0065-2911(08)60143-5
18 https://doi.org/10.1021/bk-1995-0618.ch009
19 https://doi.org/10.1042/bj2930781
20 https://doi.org/10.1073/pnas.91.15.7301
21 https://doi.org/10.1073/pnas.91.22.10445
22 https://doi.org/10.1073/pnas.93.8.3487
23 https://doi.org/10.1073/pnas.94.6.2122
24 https://doi.org/10.1093/nar/15.8.3257
25 https://doi.org/10.1094/mpmi.1997.10.5.531
26 https://doi.org/10.1099/00207713-36-3-435
27 https://doi.org/10.1104/pp.100.1.120
28 https://doi.org/10.1104/pp.109.4.1199
29 https://doi.org/10.1104/pp.79.2.568
30 https://doi.org/10.1126/science.250.4983.959
31 https://doi.org/10.1126/science.251.4999.1318
32 https://doi.org/10.1126/science.261.5124.1032
33 https://doi.org/10.1126/science.8303295
34 schema:datePublished 2000-02
35 schema:datePublishedReg 2000-02-01
36 schema:description Plant biomass, the most abundant renewable resource on earth, is a potential source of fermentable sugars for production of alternative transportation fuels and other chemicals. Bioconversion of plant biomass to fermentable glucose involves enzymatic hydrolysis of cellulose, a major polysaccharide constituent. Because commercially available microbial cellulases are prohibitively expensive for bioethanol processes, we have investigated the feasibility of producing these enzymes in plants as a low-cost, potentially high-volume alternative to traditional production methods. We have successfully expressed the catalytic domain of a thermostable (Topt=81 °C) endo-1,4-β-D-glucanase from the eubacterium, Acidothermus cellulolyticus, in the apoplast of tobacco BY-2 suspension cells and leaves of Arabidopsis thaliana plants. The apoplast-targeting cassette designed for this work consists of the cauliflower mosaic virus 35S promoter, the tobacco mosaic virus Ω translational enhancer, the sequence encoding the tobacco Pr1a signal peptide, and the polyadenylation signal of nopaline synthase. Recombinant E1 catalytic domain was targeted to the ER by the signal peptide and secreted into the apoplast via the default pathway. Secretion of the enzyme did not detectably affect the growth rate of transgenic BY-2 cells, although the protein was enzymatically active at elevated temperatures. Similarly, transgenic plants exhibited no abnormal phenotypes correlating with expression of the enzyme. Close agreement between independent immunochemical and activity-based assays indicates that the enzyme accumulated to concentrations up to 26% of the total soluble protein in leaves of primary A. thaliana transformants. The amount of functional endoglucanase produced illustrates that plants can accumulate very large quantities of enzyme for commercial biomass conversion.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N4b87ddd4f6db4a8c96b5bfb19ee5bc74
41 Nfbd278cbc5f646c88ac44e5a062df9cc
42 sg:journal.1114043
43 schema:name Accumulation of a thermostable endo-1,4-β-D-glucanase in the apoplast of Arabidopsis thaliana leaves
44 schema:pagination 37-46
45 schema:productId N1c08508f8da5424fa960e81ebfe90723
46 N4b8ffcbf34314e4a8e3f84f86894f103
47 Nec22172d359e414eb2e15195968ba8f0
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016435540
49 https://doi.org/10.1023/a:1009667524690
50 schema:sdDatePublished 2019-04-10T22:29
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nc9442108e97f4fcbbe245fe824153579
53 schema:url http://link.springer.com/10.1023/A:1009667524690
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N1c08508f8da5424fa960e81ebfe90723 schema:name readcube_id
58 schema:value 4e4f291dfdc69ca97d23f5c2d18bce87428e8916b444b91259bbe5837252ce8b
59 rdf:type schema:PropertyValue
60 N214f17367fb94758998daadb4e7f1010 rdf:first sg:person.01006375424.95
61 rdf:rest N2d9691b25503486fafe2d01022beb5f0
62 N22db03109bd94b36852be58351d9a2d7 rdf:first Nb25b58e5f71645d79fcef52038db32e4
63 rdf:rest N214f17367fb94758998daadb4e7f1010
64 N2d9691b25503486fafe2d01022beb5f0 rdf:first sg:person.01055427303.44
65 rdf:rest rdf:nil
66 N4b87ddd4f6db4a8c96b5bfb19ee5bc74 schema:volumeNumber 6
67 rdf:type schema:PublicationVolume
68 N4b8ffcbf34314e4a8e3f84f86894f103 schema:name doi
69 schema:value 10.1023/a:1009667524690
70 rdf:type schema:PropertyValue
71 Nb25b58e5f71645d79fcef52038db32e4 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
72 schema:familyName Ziegler
73 schema:givenName Matthew T.
74 rdf:type schema:Person
75 Nc9442108e97f4fcbbe245fe824153579 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nec22172d359e414eb2e15195968ba8f0 schema:name dimensions_id
78 schema:value pub.1016435540
79 rdf:type schema:PropertyValue
80 Nfbd278cbc5f646c88ac44e5a062df9cc schema:issueNumber 1
81 rdf:type schema:PublicationIssue
82 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
83 schema:name Biological Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
86 schema:name Biochemistry and Cell Biology
87 rdf:type schema:DefinedTerm
88 sg:journal.1114043 schema:issn 1380-3743
89 1572-9788
90 schema:name Molecular Breeding
91 rdf:type schema:Periodical
92 sg:person.01006375424.95 schema:affiliation https://www.grid.ac/institutes/grid.419357.d
93 schema:familyName Thomas
94 schema:givenName Steven R.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006375424.95
96 rdf:type schema:Person
97 sg:person.01055427303.44 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
98 schema:familyName Danna
99 schema:givenName Kathleen J.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055427303.44
101 rdf:type schema:Person
102 sg:pub.10.1007/978-94-009-0951-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053032124
103 https://doi.org/10.1007/978-94-009-0951-9_3
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-94-011-5242-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040355729
106 https://doi.org/10.1007/978-94-011-5242-6_2
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf02933425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034433652
109 https://doi.org/10.1007/bf02933425
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf02941803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008063846
112 https://doi.org/10.1007/bf02941803
113 rdf:type schema:CreativeWork
114 sg:pub.10.1023/a:1007444100898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031083035
115 https://doi.org/10.1023/a:1007444100898
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nbt0195-63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033427699
118 https://doi.org/10.1038/nbt0195-63
119 rdf:type schema:CreativeWork
120 https://app.dimensions.ai/details/publication/pub.1082860796 schema:CreativeWork
121 https://doi.org/10.1002/(sici)1097-0290(19971205)56:5<473::aid-bit1>3.0.co;2-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1017887176
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0076-6879(88)60107-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013706596
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0076-6879(88)60114-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007876284
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0076-6879(92)16037-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1052317633
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0168-9452(93)90142-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1034568893
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0968-0004(90)90303-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1006042719
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0065-2911(08)60143-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047082497
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1021/bk-1995-0618.ch009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089360878
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1042/bj2930781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051622856
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1073/pnas.91.15.7301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051513641
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1073/pnas.91.22.10445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024001572
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1073/pnas.93.8.3487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004035206
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1073/pnas.94.6.2122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025620211
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/nar/15.8.3257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018539462
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1094/mpmi.1997.10.5.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060079781
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1099/00207713-36-3-435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060348077
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1104/pp.100.1.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005327172
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1104/pp.109.4.1199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051145678
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1104/pp.79.2.568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052662880
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1126/science.250.4983.959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062541055
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1126/science.251.4999.1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022014021
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1126/science.261.5124.1032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062546776
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1126/science.8303295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062654568
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.266190.a schema:alternateName University of Colorado Boulder
168 schema:name Department of Molecular, Cellular and Developmental Biology, University of Colorado, 80309-0347, Boulder, CO, USA
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.419357.d schema:alternateName National Renewable Energy Laboratory
171 schema:name Biotechnology Center for Fuels and Chemicals, National Renewable Energy Laboratory, 1617 Cole Boulevard, 80401, Golden, CO, USA
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...