A Simulated Annealing Approach to Bicriteria Scheduling Problems on a Single Machine View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-08

AUTHORS

Esra Köktener Karasakal, Murat Köksalan

ABSTRACT

In this paper, we apply a simulated annealing approach to two bicriteria scheduling problems on a single machine. The first problem is the strongly NP-hard problem of minimizing total flowtime and maximum earliness. The second one is the NP-hard problem of minimizing total flowtime and number of tardy jobs. We experiment on different neighbourhood structures as well as other parameters of the simulated annealing approach to improve its performance. Our computational experiments show that the developed approach yields solutions that are very close to lower bounds and hence very close to the optimal solutions of their corresponding problems for the minimization of total flowtime and maximum earliness. For the minimization of total flowtime and number tardy, our experiments show that the simulated annealing approach yields results that are superior to randomly generated schedules. More... »

PAGES

311-327

References to SciGraph publications

  • 1986-01. Convergence of an annealing algorithm in MATHEMATICAL PROGRAMMING
  • 1983-01. Hybrid algorithm for sequencing with bicriteria in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1009622230725

    DOI

    http://dx.doi.org/10.1023/a:1009622230725

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028068847


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Middle East Technical University", 
              "id": "https://www.grid.ac/institutes/grid.6935.9", 
              "name": [
                "Department of Industrial Engineering, Middle East Technical University, 06531, Ankara, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karasakal", 
            "givenName": "Esra K\u00f6ktener", 
            "id": "sg:person.014016103473.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014016103473.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Middle East Technical University", 
              "id": "https://www.grid.ac/institutes/grid.6935.9", 
              "name": [
                "Department of Industrial Engineering, Middle East Technical University, 06531, Ankara, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "K\u00f6ksalan", 
            "givenName": "Murat", 
            "id": "sg:person.014504274147.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014504274147.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/1520-6750(199210)39:6<859::aid-nav3220390610>3.0.co;2-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004723566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00934608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004764892", 
              "https://doi.org/10.1007/bf00934608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00934608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004764892", 
              "https://doi.org/10.1007/bf00934608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1520-6750(199110)38:5<721::aid-nav3220380507>3.0.co;2-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004896221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nav.3800190215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004931083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1520-6750(199702)44:1<109::aid-nav7>3.0.co;2-e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006454597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0305-0483(97)00024-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007038270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07408179808966450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008741608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(80)90038-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008885592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(80)90038-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008885592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-5273(97)00099-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011370442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(93)90236-g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015512768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(93)90236-g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015512768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0166-218x(90)90104-k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017599987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/comjnl/26.4.320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019769627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07408179108963868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020026136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0166-218x(92)90255-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030317560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-5060(08)70743-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038309764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nav.3800290114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038615348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(90)90301-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042602114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(90)90301-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042602114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(95)00149-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045624963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01582166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049532067", 
              "https://doi.org/10.1007/bf01582166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/05695558308974617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053153826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/21.391290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061122143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0210014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062841567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/mnsc.15.1.102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064716407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/mnsc.32.4.464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064720169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/opre.21.2.498", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064728333"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-08", 
        "datePublishedReg": "2000-08-01", 
        "description": "In this paper, we apply a simulated annealing approach to two bicriteria scheduling problems on a single machine. The first problem is the strongly NP-hard problem of minimizing total flowtime and maximum earliness. The second one is the NP-hard problem of minimizing total flowtime and number of tardy jobs. We experiment on different neighbourhood structures as well as other parameters of the simulated annealing approach to improve its performance. Our computational experiments show that the developed approach yields solutions that are very close to lower bounds and hence very close to the optimal solutions of their corresponding problems for the minimization of total flowtime and maximum earliness. For the minimization of total flowtime and number tardy, our experiments show that the simulated annealing approach yields results that are superior to randomly generated schedules.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1009622230725", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136112", 
            "issn": [
              "1381-1231", 
              "1572-9397"
            ], 
            "name": "Journal of Heuristics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "A Simulated Annealing Approach to Bicriteria Scheduling Problems on a Single Machine", 
        "pagination": "311-327", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "85b661a92b473a7d036781298500a7f83c348e4990bf3feec812fab0a2744e31"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1009622230725"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028068847"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1009622230725", 
          "https://app.dimensions.ai/details/publication/pub.1028068847"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000500.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1009622230725"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1009622230725'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1009622230725'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1009622230725'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1009622230725'


     

    This table displays all metadata directly associated to this object as RDF triples.

    145 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1009622230725 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N008d033bab49480a9752ac297bce502a
    4 schema:citation sg:pub.10.1007/bf00934608
    5 sg:pub.10.1007/bf01582166
    6 https://doi.org/10.1002/(sici)1520-6750(199702)44:1<109::aid-nav7>3.0.co;2-e
    7 https://doi.org/10.1002/1520-6750(199110)38:5<721::aid-nav3220380507>3.0.co;2-4
    8 https://doi.org/10.1002/1520-6750(199210)39:6<859::aid-nav3220390610>3.0.co;2-w
    9 https://doi.org/10.1002/nav.3800190215
    10 https://doi.org/10.1002/nav.3800290114
    11 https://doi.org/10.1016/0166-218x(90)90104-k
    12 https://doi.org/10.1016/0166-218x(92)90255-9
    13 https://doi.org/10.1016/0377-2217(80)90038-7
    14 https://doi.org/10.1016/0377-2217(90)90301-q
    15 https://doi.org/10.1016/0377-2217(93)90236-g
    16 https://doi.org/10.1016/0377-2217(95)00149-2
    17 https://doi.org/10.1016/s0167-5060(08)70743-x
    18 https://doi.org/10.1016/s0305-0483(97)00024-8
    19 https://doi.org/10.1016/s0925-5273(97)00099-6
    20 https://doi.org/10.1080/05695558308974617
    21 https://doi.org/10.1080/07408179108963868
    22 https://doi.org/10.1080/07408179808966450
    23 https://doi.org/10.1093/comjnl/26.4.320
    24 https://doi.org/10.1109/21.391290
    25 https://doi.org/10.1137/0210014
    26 https://doi.org/10.1287/mnsc.15.1.102
    27 https://doi.org/10.1287/mnsc.32.4.464
    28 https://doi.org/10.1287/opre.21.2.498
    29 schema:datePublished 2000-08
    30 schema:datePublishedReg 2000-08-01
    31 schema:description In this paper, we apply a simulated annealing approach to two bicriteria scheduling problems on a single machine. The first problem is the strongly NP-hard problem of minimizing total flowtime and maximum earliness. The second one is the NP-hard problem of minimizing total flowtime and number of tardy jobs. We experiment on different neighbourhood structures as well as other parameters of the simulated annealing approach to improve its performance. Our computational experiments show that the developed approach yields solutions that are very close to lower bounds and hence very close to the optimal solutions of their corresponding problems for the minimization of total flowtime and maximum earliness. For the minimization of total flowtime and number tardy, our experiments show that the simulated annealing approach yields results that are superior to randomly generated schedules.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N12ca708e83d64ce68671c67395ce48b3
    36 N899b6402d6b541a6ac88e58af04bfbe7
    37 sg:journal.1136112
    38 schema:name A Simulated Annealing Approach to Bicriteria Scheduling Problems on a Single Machine
    39 schema:pagination 311-327
    40 schema:productId N724bafb7129f45f4ae953a04cd52ef24
    41 Ncecf9b448936467ca3bf983821c9dc1c
    42 Nfa61ecdb8c0742ba900ed21e6014edf2
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028068847
    44 https://doi.org/10.1023/a:1009622230725
    45 schema:sdDatePublished 2019-04-10T20:44
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N487f5ac53b604e82b159086dbc7a918c
    48 schema:url http://link.springer.com/10.1023/A:1009622230725
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N008d033bab49480a9752ac297bce502a rdf:first sg:person.014016103473.86
    53 rdf:rest N01ffd3e0a1cf4432aac2089267f5ff7b
    54 N01ffd3e0a1cf4432aac2089267f5ff7b rdf:first sg:person.014504274147.83
    55 rdf:rest rdf:nil
    56 N12ca708e83d64ce68671c67395ce48b3 schema:issueNumber 3
    57 rdf:type schema:PublicationIssue
    58 N487f5ac53b604e82b159086dbc7a918c schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 N724bafb7129f45f4ae953a04cd52ef24 schema:name dimensions_id
    61 schema:value pub.1028068847
    62 rdf:type schema:PropertyValue
    63 N899b6402d6b541a6ac88e58af04bfbe7 schema:volumeNumber 6
    64 rdf:type schema:PublicationVolume
    65 Ncecf9b448936467ca3bf983821c9dc1c schema:name readcube_id
    66 schema:value 85b661a92b473a7d036781298500a7f83c348e4990bf3feec812fab0a2744e31
    67 rdf:type schema:PropertyValue
    68 Nfa61ecdb8c0742ba900ed21e6014edf2 schema:name doi
    69 schema:value 10.1023/a:1009622230725
    70 rdf:type schema:PropertyValue
    71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Information and Computing Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Artificial Intelligence and Image Processing
    76 rdf:type schema:DefinedTerm
    77 sg:journal.1136112 schema:issn 1381-1231
    78 1572-9397
    79 schema:name Journal of Heuristics
    80 rdf:type schema:Periodical
    81 sg:person.014016103473.86 schema:affiliation https://www.grid.ac/institutes/grid.6935.9
    82 schema:familyName Karasakal
    83 schema:givenName Esra Köktener
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014016103473.86
    85 rdf:type schema:Person
    86 sg:person.014504274147.83 schema:affiliation https://www.grid.ac/institutes/grid.6935.9
    87 schema:familyName Köksalan
    88 schema:givenName Murat
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014504274147.83
    90 rdf:type schema:Person
    91 sg:pub.10.1007/bf00934608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004764892
    92 https://doi.org/10.1007/bf00934608
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/bf01582166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049532067
    95 https://doi.org/10.1007/bf01582166
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1002/(sici)1520-6750(199702)44:1<109::aid-nav7>3.0.co;2-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1006454597
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1002/1520-6750(199110)38:5<721::aid-nav3220380507>3.0.co;2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004896221
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1002/1520-6750(199210)39:6<859::aid-nav3220390610>3.0.co;2-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1004723566
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1002/nav.3800190215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004931083
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1002/nav.3800290114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038615348
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/0166-218x(90)90104-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1017599987
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/0166-218x(92)90255-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030317560
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/0377-2217(80)90038-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008885592
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/0377-2217(90)90301-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1042602114
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/0377-2217(93)90236-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1015512768
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/0377-2217(95)00149-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045624963
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/s0167-5060(08)70743-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038309764
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/s0305-0483(97)00024-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007038270
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/s0925-5273(97)00099-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011370442
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1080/05695558308974617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053153826
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1080/07408179108963868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020026136
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1080/07408179808966450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008741608
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1093/comjnl/26.4.320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019769627
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/21.391290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061122143
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1137/0210014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841567
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1287/mnsc.15.1.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064716407
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1287/mnsc.32.4.464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064720169
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1287/opre.21.2.498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064728333
    142 rdf:type schema:CreativeWork
    143 https://www.grid.ac/institutes/grid.6935.9 schema:alternateName Middle East Technical University
    144 schema:name Department of Industrial Engineering, Middle East Technical University, 06531, Ankara, Turkey
    145 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...