Best linear unbiased estimators for the simple linear regression model using ranked set sampling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1999-06

AUTHORS

Maria Cecilia Mendes Barreto, Vic Barnett

ABSTRACT

When sample observations are expensive or difficult to obtain, ranked set sampling is known to be an efficient method for estimating the population mean, and in particular to improve on the sample mean estimator. Using best linear unbiased estimators, this paper considers the simple linear regression model with replicated observations. Use of a form of ranked set sampling is shown to be markedly more efficient for normal data when compared with the traditional simple linear regression estimators. More... »

PAGES

119-133

References to SciGraph publications

  • 1994-12. Estimation of parameters in a two-parameter exponential distribution using ranked set sample in ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS
  • 1995-09. Parametric ranked set sampling in ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS
  • 1968-12. On unbiased estimates of the population mean based on the sample stratified by means of ordering in ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1009609902784

    DOI

    http://dx.doi.org/10.1023/a:1009609902784

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1010388613


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Federal University of S\u00e3o Carlos", 
              "id": "https://www.grid.ac/institutes/grid.411247.5", 
              "name": [
                "Department of Statistics, The Federal University of Sao Carlos, CEP 13565 905, Sao Carlos, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barreto", 
            "givenName": "Maria Cecilia Mendes", 
            "id": "sg:person.0603126763.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603126763.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Nottingham", 
              "id": "https://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "School of Mathematical Sciences, The University of Nottingham, University Park, NG7 2RD, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barnett", 
            "givenName": "Vic", 
            "id": "sg:person.012665253133.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012665253133.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00773478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001374530", 
              "https://doi.org/10.1007/bf00773478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bimj.4710380506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001596961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bimj.4710370704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003191352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/02664769624224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004821638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02911622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014193360", 
              "https://doi.org/10.1007/bf02911622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02911622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014193360", 
              "https://doi.org/10.1007/bf02911622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bimj.4710340307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020687832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bimj.4710380416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021422338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/ar9520385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024491920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/02664769723431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024966413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1524/strm.1996.14.3.223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039779937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1988.10478607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058303584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1992.10475239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1994.10476458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1994.10476777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03610928608829144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058333609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03610929008830198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058334668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03610929608831789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058336190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03610929608831863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058336248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2530493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069975998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2532906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069978309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2533564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069978961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00773396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086064729", 
              "https://doi.org/10.1007/bf00773396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2347546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101982998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2347546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101982998"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-06", 
        "datePublishedReg": "1999-06-01", 
        "description": "When sample observations are expensive or difficult to obtain, ranked set sampling is known to be an efficient method for estimating the population mean, and in particular to improve on the sample mean estimator. Using best linear unbiased estimators, this paper considers the simple linear regression model with replicated observations. Use of a form of ranked set sampling is shown to be markedly more efficient for normal data when compared with the traditional simple linear regression estimators.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1009609902784", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1356907", 
            "issn": [
              "1573-3009", 
              "1352-8505"
            ], 
            "name": "Environmental and Ecological Statistics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "Best linear unbiased estimators for the simple linear regression model using ranked set sampling", 
        "pagination": "119-133", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "317e11c07d2f023253fa31889978c827d380f43657a30b9eed2dd0ffbe80e84f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1009609902784"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1010388613"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1009609902784", 
          "https://app.dimensions.ai/details/publication/pub.1010388613"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000498.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1009609902784"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1009609902784'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1009609902784'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1009609902784'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1009609902784'


     

    This table displays all metadata directly associated to this object as RDF triples.

    143 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1009609902784 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N1b8149f5e16c478b9eeac38f117b0b60
    4 schema:citation sg:pub.10.1007/bf00773396
    5 sg:pub.10.1007/bf00773478
    6 sg:pub.10.1007/bf02911622
    7 https://doi.org/10.1002/bimj.4710340307
    8 https://doi.org/10.1002/bimj.4710370704
    9 https://doi.org/10.1002/bimj.4710380416
    10 https://doi.org/10.1002/bimj.4710380506
    11 https://doi.org/10.1071/ar9520385
    12 https://doi.org/10.1080/01621459.1988.10478607
    13 https://doi.org/10.1080/01621459.1992.10475239
    14 https://doi.org/10.1080/01621459.1994.10476458
    15 https://doi.org/10.1080/01621459.1994.10476777
    16 https://doi.org/10.1080/02664769624224
    17 https://doi.org/10.1080/02664769723431
    18 https://doi.org/10.1080/03610928608829144
    19 https://doi.org/10.1080/03610929008830198
    20 https://doi.org/10.1080/03610929608831789
    21 https://doi.org/10.1080/03610929608831863
    22 https://doi.org/10.1524/strm.1996.14.3.223
    23 https://doi.org/10.2307/2347546
    24 https://doi.org/10.2307/2530493
    25 https://doi.org/10.2307/2532906
    26 https://doi.org/10.2307/2533564
    27 schema:datePublished 1999-06
    28 schema:datePublishedReg 1999-06-01
    29 schema:description When sample observations are expensive or difficult to obtain, ranked set sampling is known to be an efficient method for estimating the population mean, and in particular to improve on the sample mean estimator. Using best linear unbiased estimators, this paper considers the simple linear regression model with replicated observations. Use of a form of ranked set sampling is shown to be markedly more efficient for normal data when compared with the traditional simple linear regression estimators.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree true
    33 schema:isPartOf N802c43a1ecd141059f5c2234a575bfa6
    34 Nc040ca3281ce406c8d77d2a278e27441
    35 sg:journal.1356907
    36 schema:name Best linear unbiased estimators for the simple linear regression model using ranked set sampling
    37 schema:pagination 119-133
    38 schema:productId N4c7d4a615ec94a5fb54b1bb920d744d1
    39 Nf5abd89ffb55439fa31b1e050e178c8f
    40 Nf97b0df787624d41a9b38fb76f413eed
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010388613
    42 https://doi.org/10.1023/a:1009609902784
    43 schema:sdDatePublished 2019-04-10T15:48
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N49992cc3b3ca4f1da09a3fadfe69f63f
    46 schema:url http://link.springer.com/10.1023/A:1009609902784
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N1b8149f5e16c478b9eeac38f117b0b60 rdf:first sg:person.0603126763.03
    51 rdf:rest Na1d897ee24e0453ca2fa348ae5dfe605
    52 N49992cc3b3ca4f1da09a3fadfe69f63f schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N4c7d4a615ec94a5fb54b1bb920d744d1 schema:name readcube_id
    55 schema:value 317e11c07d2f023253fa31889978c827d380f43657a30b9eed2dd0ffbe80e84f
    56 rdf:type schema:PropertyValue
    57 N802c43a1ecd141059f5c2234a575bfa6 schema:volumeNumber 6
    58 rdf:type schema:PublicationVolume
    59 Na1d897ee24e0453ca2fa348ae5dfe605 rdf:first sg:person.012665253133.25
    60 rdf:rest rdf:nil
    61 Nc040ca3281ce406c8d77d2a278e27441 schema:issueNumber 2
    62 rdf:type schema:PublicationIssue
    63 Nf5abd89ffb55439fa31b1e050e178c8f schema:name doi
    64 schema:value 10.1023/a:1009609902784
    65 rdf:type schema:PropertyValue
    66 Nf97b0df787624d41a9b38fb76f413eed schema:name dimensions_id
    67 schema:value pub.1010388613
    68 rdf:type schema:PropertyValue
    69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Mathematical Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Statistics
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1356907 schema:issn 1352-8505
    76 1573-3009
    77 schema:name Environmental and Ecological Statistics
    78 rdf:type schema:Periodical
    79 sg:person.012665253133.25 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
    80 schema:familyName Barnett
    81 schema:givenName Vic
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012665253133.25
    83 rdf:type schema:Person
    84 sg:person.0603126763.03 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
    85 schema:familyName Barreto
    86 schema:givenName Maria Cecilia Mendes
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603126763.03
    88 rdf:type schema:Person
    89 sg:pub.10.1007/bf00773396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086064729
    90 https://doi.org/10.1007/bf00773396
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf00773478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001374530
    93 https://doi.org/10.1007/bf00773478
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/bf02911622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014193360
    96 https://doi.org/10.1007/bf02911622
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1002/bimj.4710340307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020687832
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1002/bimj.4710370704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003191352
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1002/bimj.4710380416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021422338
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1002/bimj.4710380506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001596961
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1071/ar9520385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024491920
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1080/01621459.1988.10478607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303584
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1080/01621459.1992.10475239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304268
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1080/01621459.1994.10476458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304592
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1080/01621459.1994.10476777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304641
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1080/02664769624224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004821638
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1080/02664769723431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024966413
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1080/03610928608829144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058333609
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1080/03610929008830198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058334668
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1080/03610929608831789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058336190
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1080/03610929608831863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058336248
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1524/strm.1996.14.3.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039779937
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.2307/2347546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982998
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.2307/2530493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975998
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.2307/2532906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069978309
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.2307/2533564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069978961
    137 rdf:type schema:CreativeWork
    138 https://www.grid.ac/institutes/grid.411247.5 schema:alternateName Federal University of São Carlos
    139 schema:name Department of Statistics, The Federal University of Sao Carlos, CEP 13565 905, Sao Carlos, SP, Brazil
    140 rdf:type schema:Organization
    141 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
    142 schema:name School of Mathematical Sciences, The University of Nottingham, University Park, NG7 2RD, Nottingham, UK
    143 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...