Efficient Near Neighbor Searching Using Multi-Indexes for Content-Based Multimedia Data Retrieval View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-03

AUTHORS

Chih-Chin Liu, Jia-LieN Hsu, Arbee L.P. Chen

ABSTRACT

Many content-based multimedia data retrieval problems can be transformed into the near neighbor searching problem in multidimensional feature space. An efficient near neighbor searching algorithm is needed when developing a multimedia database system. In this paper, we propose an approach to efficiently solve the near neighbor searching problem. In this approach, along each dimension an index is constructed according to the values of feature points of multimedia objects. A user can pose a content-based query by specifying a multimedia query example and a similarity measure. The specified query example will be transformed into a query point in the multi-dimensional feature space. The possible result points in each dimension are then retrieved by searching the value of the query point in the corresponding dimension. The sets of the possible result points are merged one by one by removing the points which are not within the query radius. The resultant points and their distances from the query point form the answer of the query. To show the efficiency of our approach, a series of experiments are performed to compare with the related approaches. More... »

PAGES

235-254

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1009601513674

DOI

http://dx.doi.org/10.1023/a:1009601513674

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029411647


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, 300, R.O.C, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Chih-Chin", 
        "id": "sg:person.01143604600.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143604600.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, 300, R.O.C, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "Jia-LieN", 
        "id": "sg:person.012026546236.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012026546236.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, 300, R.O.C, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Arbee L.P.", 
        "id": "sg:person.011521402733.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521402733.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/201040.201041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001844505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/361002.361007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004029497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01231606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015907927", 
          "https://doi.org/10.1007/bf01231606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01231606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015907927", 
          "https://doi.org/10.1007/bf01231606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/211430.211433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017316434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00288933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021404754", 
          "https://doi.org/10.1007/bf00288933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/356789.356797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039888221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01231602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042058432", 
          "https://doi.org/10.1007/bf01231602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01231602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042058432", 
          "https://doi.org/10.1007/bf01231602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/348.318586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049066804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/93.311653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061248737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/93.338682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061248743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/93.368596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061248753"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-03", 
    "datePublishedReg": "2001-03-01", 
    "description": "Many content-based multimedia data retrieval problems can be transformed into the near neighbor searching problem in multidimensional feature space. An efficient near neighbor searching algorithm is needed when developing a multimedia database system. In this paper, we propose an approach to efficiently solve the near neighbor searching problem. In this approach, along each dimension an index is constructed according to the values of feature points of multimedia objects. A user can pose a content-based query by specifying a multimedia query example and a similarity measure. The specified query example will be transformed into a query point in the multi-dimensional feature space. The possible result points in each dimension are then retrieved by searching the value of the query point in the corresponding dimension. The sets of the possible result points are merged one by one by removing the points which are not within the query radius. The resultant points and their distances from the query point form the answer of the query. To show the efficiency of our approach, a series of experiments are performed to compare with the related approaches.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1009601513674", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Efficient Near Neighbor Searching Using Multi-Indexes for Content-Based Multimedia Data Retrieval", 
    "pagination": "235-254", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8c1cbdfa658110e66fbc25a655fb89985cbb9f17d54a78e9f251f09f596b6d35"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1009601513674"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029411647"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1009601513674", 
      "https://app.dimensions.ai/details/publication/pub.1029411647"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1009601513674"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1009601513674'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1009601513674'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1009601513674'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1009601513674'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1009601513674 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N578605844a6a4d3d997798f5d2d30b10
4 schema:citation sg:pub.10.1007/bf00288933
5 sg:pub.10.1007/bf01231602
6 sg:pub.10.1007/bf01231606
7 https://doi.org/10.1109/93.311653
8 https://doi.org/10.1109/93.338682
9 https://doi.org/10.1109/93.368596
10 https://doi.org/10.1145/201040.201041
11 https://doi.org/10.1145/211430.211433
12 https://doi.org/10.1145/348.318586
13 https://doi.org/10.1145/356789.356797
14 https://doi.org/10.1145/361002.361007
15 schema:datePublished 2001-03
16 schema:datePublishedReg 2001-03-01
17 schema:description Many content-based multimedia data retrieval problems can be transformed into the near neighbor searching problem in multidimensional feature space. An efficient near neighbor searching algorithm is needed when developing a multimedia database system. In this paper, we propose an approach to efficiently solve the near neighbor searching problem. In this approach, along each dimension an index is constructed according to the values of feature points of multimedia objects. A user can pose a content-based query by specifying a multimedia query example and a similarity measure. The specified query example will be transformed into a query point in the multi-dimensional feature space. The possible result points in each dimension are then retrieved by searching the value of the query point in the corresponding dimension. The sets of the possible result points are merged one by one by removing the points which are not within the query radius. The resultant points and their distances from the query point form the answer of the query. To show the efficiency of our approach, a series of experiments are performed to compare with the related approaches.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N50181af7abcc4a97b0a2a4bea91459a9
22 N6be07531d35342c9a3e88f1350c4174c
23 sg:journal.1044869
24 schema:name Efficient Near Neighbor Searching Using Multi-Indexes for Content-Based Multimedia Data Retrieval
25 schema:pagination 235-254
26 schema:productId N53af6461d44f4edd864579cb16828eaf
27 N7c2eda455e234918b0fc16ad0e6f0630
28 Na9bc4c0c4f7f46419ef34b772f3083ed
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029411647
30 https://doi.org/10.1023/a:1009601513674
31 schema:sdDatePublished 2019-04-10T14:06
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N8ade5fc2288543d9b191ae2353ecb7c5
34 schema:url http://link.springer.com/10.1023/A:1009601513674
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N12779f1b598f4cf9bd35965fdac863fa rdf:first sg:person.011521402733.54
39 rdf:rest rdf:nil
40 N50181af7abcc4a97b0a2a4bea91459a9 schema:issueNumber 3
41 rdf:type schema:PublicationIssue
42 N53af6461d44f4edd864579cb16828eaf schema:name doi
43 schema:value 10.1023/a:1009601513674
44 rdf:type schema:PropertyValue
45 N578605844a6a4d3d997798f5d2d30b10 rdf:first sg:person.01143604600.80
46 rdf:rest N5cf23c47202b4f38b5531b026a0f88e4
47 N5cf23c47202b4f38b5531b026a0f88e4 rdf:first sg:person.012026546236.92
48 rdf:rest N12779f1b598f4cf9bd35965fdac863fa
49 N6be07531d35342c9a3e88f1350c4174c schema:volumeNumber 13
50 rdf:type schema:PublicationVolume
51 N7c2eda455e234918b0fc16ad0e6f0630 schema:name dimensions_id
52 schema:value pub.1029411647
53 rdf:type schema:PropertyValue
54 N8ade5fc2288543d9b191ae2353ecb7c5 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Na9bc4c0c4f7f46419ef34b772f3083ed schema:name readcube_id
57 schema:value 8c1cbdfa658110e66fbc25a655fb89985cbb9f17d54a78e9f251f09f596b6d35
58 rdf:type schema:PropertyValue
59 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
60 schema:name Information and Computing Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information Systems
64 rdf:type schema:DefinedTerm
65 sg:journal.1044869 schema:issn 1380-7501
66 1573-7721
67 schema:name Multimedia Tools and Applications
68 rdf:type schema:Periodical
69 sg:person.01143604600.80 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
70 schema:familyName Liu
71 schema:givenName Chih-Chin
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143604600.80
73 rdf:type schema:Person
74 sg:person.011521402733.54 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
75 schema:familyName Chen
76 schema:givenName Arbee L.P.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521402733.54
78 rdf:type schema:Person
79 sg:person.012026546236.92 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
80 schema:familyName Hsu
81 schema:givenName Jia-LieN
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012026546236.92
83 rdf:type schema:Person
84 sg:pub.10.1007/bf00288933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021404754
85 https://doi.org/10.1007/bf00288933
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01231602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042058432
88 https://doi.org/10.1007/bf01231602
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01231606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015907927
91 https://doi.org/10.1007/bf01231606
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/93.311653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061248737
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/93.338682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061248743
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/93.368596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061248753
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1145/201040.201041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001844505
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1145/211430.211433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017316434
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1145/348.318586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049066804
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1145/356789.356797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039888221
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1145/361002.361007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004029497
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
110 schema:name Department of Computer Science, National Tsing Hua University, 300, R.O.C, Hsinchu, Taiwan
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...