Ontology type: schema:ScholarlyArticle
2000-03
AUTHORSN. M. Bravaya, A. D. Pomogailo
ABSTRACTA spin labeling technique was used to investigate the topochemical characteristics of polymer carriers and immobilized metal complexes. Functionalized polyethylenes (PE) such as PE–grafted-polyallylamine (1), PE–grafted-polydiallyl-amine (2), and PE–grafted-poly-4-vinylpyridine (3), obtained by grafting polymerization of the corresponding monomers, were used as polymer carriers. Metal-containing polymers were obtained by immobilization to 2 with either TiCl4 (2/Ti) or Al(C2H5)2 Cl (2/Al). The stable nitroxyl radical 2,2,6,6-tetramethyl-4-(2′-oxy-4′,6′-dichlorotriazine)piperidine-1-oxyl \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\dot R_1 )$$ \end{document} was used for spin labeling 2 to give \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2/\dot R_1 $$ \end{document}, while 2,2,5,5,tetramethyl-3-(N-acetoamidiiodine)-pyrrollidine-1-oxyl \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\dot R_2 )$$ \end{document} was used for spin labeling 3 to give \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$3/\dot R_2 $$ \end{document}. Radical 2,2,6,6-tetramethyl-4-hydroxy-pyperidine-1-oxyl \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\dot R_3 )$$ \end{document} was bonded to 2/Ti and 2/Al to give \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2/Ti/\dot R_3 $$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2/Al/\dot R_3 $$ \end{document}, respectively. The accessibility of the functionalized polymers 1–3 to interact with the spin labels and the immobilized metal complexes was examined. Estimation of the effective distances between the spin labels and the dynamic behavior of nitroxyl radicals in the functionalized polymer matrixes and metal-containing polymers revealed several important features of spin-labeled systems. Metallation of a functional covering makes the polymer more accessible for spin labeling and has a considerable effect on the dynamic characteristics of polymer matrix. A change of the rotational activation energy of the spin labels from 15 kcal/mol in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2/\dot R_1 $$ \end{document} to 44 kcal/mol for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2/Ti(Al)/\dot R_3 $$ \end{document} in the temperature range 100–150°C was observed. More... »
PAGES1-22
http://scigraph.springernature.com/pub.10.1023/a:1009494915016
DOIhttp://dx.doi.org/10.1023/a:1009494915016
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1015667848
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Macromolecular and Materials Chemistry",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka Moscow Region, Russia",
"id": "http://www.grid.ac/institutes/grid.418949.9",
"name": [
"Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka Moscow Region, Russia"
],
"type": "Organization"
},
"familyName": "Bravaya",
"givenName": "N. M.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka Moscow Region, Russia",
"id": "http://www.grid.ac/institutes/grid.418949.9",
"name": [
"Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka Moscow Region, Russia"
],
"type": "Organization"
},
"familyName": "Pomogailo",
"givenName": "A. D.",
"id": "sg:person.016403071561.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403071561.84"
],
"type": "Person"
}
],
"datePublished": "2000-03",
"datePublishedReg": "2000-03-01",
"description": "A spin labeling technique was used to investigate the topochemical characteristics of polymer carriers and immobilized metal complexes. Functionalized polyethylenes (PE) such as PE\u2013grafted-polyallylamine (1), PE\u2013grafted-polydiallyl-amine (2), and PE\u2013grafted-poly-4-vinylpyridine (3), obtained by grafting polymerization of the corresponding monomers, were used as polymer carriers. Metal-containing polymers were obtained by immobilization to 2 with either TiCl4 (2/Ti) or Al(C2H5)2 Cl (2/Al). The stable nitroxyl radical 2,2,6,6-tetramethyl-4-(2\u2032-oxy-4\u2032,6\u2032-dichlorotriazine)piperidine-1-oxyl \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$(\\dot R_1 )$$\n\\end{document} was used for spin labeling 2 to give \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$2/\\dot R_1 $$\n\\end{document}, while 2,2,5,5,tetramethyl-3-(N-acetoamidiiodine)-pyrrollidine-1-oxyl \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$(\\dot R_2 )$$\n\\end{document} was used for spin labeling 3 to give \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$3/\\dot R_2 $$\n\\end{document}. Radical 2,2,6,6-tetramethyl-4-hydroxy-pyperidine-1-oxyl \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$(\\dot R_3 )$$\n\\end{document} was bonded to 2/Ti and 2/Al to give \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$2/Ti/\\dot R_3 $$\n\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$2/Al/\\dot R_3 $$\n\\end{document}, respectively. The accessibility of the functionalized polymers 1\u20133 to interact with the spin labels and the immobilized metal complexes was examined. Estimation of the effective distances between the spin labels and the dynamic behavior of nitroxyl radicals in the functionalized polymer matrixes and metal-containing polymers revealed several important features of spin-labeled systems. Metallation of a functional covering makes the polymer more accessible for spin labeling and has a considerable effect on the dynamic characteristics of polymer matrix. A change of the rotational activation energy of the spin labels from 15 kcal/mol in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$2/\\dot R_1 $$\n\\end{document} to 44 kcal/mol for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$2/Ti(Al)/\\dot R_3 $$\n\\end{document} in the temperature range 100\u2013150\u00b0C was observed.",
"genre": "article",
"id": "sg:pub.10.1023/a:1009494915016",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1047541",
"issn": [
"1574-1443",
"1574-1451"
],
"name": "Journal of Inorganic and Organometallic Polymers and Materials",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "10"
}
],
"keywords": [
"metal-containing polymers",
"metal complexes",
"polymer carrier",
"polymer matrix",
"spin labels",
"polymer 1",
"catalytic system",
"stable nitroxyl",
"spin-labeled systems",
"nitroxyl radicals",
"rotational activation energy",
"polymers",
"functional covering",
"tetramethyl-4",
"kcal/",
"topochemical characteristics",
"temperature range 100",
"polyethylene",
"activation energy",
"spin labeling technique",
"complexes",
"range 100",
"vinylpyridine",
"metallation",
"polymerization",
"nitroxyl",
"monomers",
"TiCl4",
"amines",
"topochemistry",
"radicals",
"immobilization",
"carriers",
"labeling technique",
"spin labeling",
"Cl",
"matrix",
"considerable effect",
"effective distance",
"Ti",
"energy",
"labels",
"dynamic behavior",
"al",
"labeling",
"behavior",
"technique",
"system",
"important features",
"accessibility",
"characteristics",
"effect",
"analysis",
"distance",
"changes",
"features",
"covering",
"instrument",
"estimation",
"dynamic characteristics"
],
"name": "Spin Labels as the Instrument for Analysis of Topochemistry of Polymer-Immobilized Ziegler Catalytic Systems",
"pagination": "1-22",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1015667848"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1009494915016"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1009494915016",
"https://app.dimensions.ai/details/publication/pub.1015667848"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_323.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1023/a:1009494915016"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1009494915016'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1009494915016'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1009494915016'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1009494915016'
This table displays all metadata directly associated to this object as RDF triples.
124 TRIPLES
21 PREDICATES
86 URIs
78 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1023/a:1009494915016 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0303 |
3 | ″ | schema:author | N41fd277b8ea74e75af96953b053841b5 |
4 | ″ | schema:datePublished | 2000-03 |
5 | ″ | schema:datePublishedReg | 2000-03-01 |
6 | ″ | schema:description | A spin labeling technique was used to investigate the topochemical characteristics of polymer carriers and immobilized metal complexes. Functionalized polyethylenes (PE) such as PE–grafted-polyallylamine (1), PE–grafted-polydiallyl-amine (2), and PE–grafted-poly-4-vinylpyridine (3), obtained by grafting polymerization of the corresponding monomers, were used as polymer carriers. Metal-containing polymers were obtained by immobilization to 2 with either TiCl4 (2/Ti) or Al(C2H5)2 Cl (2/Al). The stable nitroxyl radical 2,2,6,6-tetramethyl-4-(2′-oxy-4′,6′-dichlorotriazine)piperidine-1-oxyl \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\dot R_1 )$$ \end{document} was used for spin labeling 2 to give \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2/\dot R_1 $$ \end{document}, while 2,2,5,5,tetramethyl-3-(N-acetoamidiiodine)-pyrrollidine-1-oxyl \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\dot R_2 )$$ \end{document} was used for spin labeling 3 to give \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$3/\dot R_2 $$ \end{document}. Radical 2,2,6,6-tetramethyl-4-hydroxy-pyperidine-1-oxyl \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\dot R_3 )$$ \end{document} was bonded to 2/Ti and 2/Al to give \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2/Ti/\dot R_3 $$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2/Al/\dot R_3 $$ \end{document}, respectively. The accessibility of the functionalized polymers 1–3 to interact with the spin labels and the immobilized metal complexes was examined. Estimation of the effective distances between the spin labels and the dynamic behavior of nitroxyl radicals in the functionalized polymer matrixes and metal-containing polymers revealed several important features of spin-labeled systems. Metallation of a functional covering makes the polymer more accessible for spin labeling and has a considerable effect on the dynamic characteristics of polymer matrix. A change of the rotational activation energy of the spin labels from 15 kcal/mol in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2/\dot R_1 $$ \end{document} to 44 kcal/mol for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2/Ti(Al)/\dot R_3 $$ \end{document} in the temperature range 100–150°C was observed. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | Ncc354c6217e24f23baada3fd1011527c |
11 | ″ | ″ | Neaae1c96e0cf44beafcb0498e51595a5 |
12 | ″ | ″ | sg:journal.1047541 |
13 | ″ | schema:keywords | Cl |
14 | ″ | ″ | Ti |
15 | ″ | ″ | TiCl4 |
16 | ″ | ″ | accessibility |
17 | ″ | ″ | activation energy |
18 | ″ | ″ | al |
19 | ″ | ″ | amines |
20 | ″ | ″ | analysis |
21 | ″ | ″ | behavior |
22 | ″ | ″ | carriers |
23 | ″ | ″ | catalytic system |
24 | ″ | ″ | changes |
25 | ″ | ″ | characteristics |
26 | ″ | ″ | complexes |
27 | ″ | ″ | considerable effect |
28 | ″ | ″ | covering |
29 | ″ | ″ | distance |
30 | ″ | ″ | dynamic behavior |
31 | ″ | ″ | dynamic characteristics |
32 | ″ | ″ | effect |
33 | ″ | ″ | effective distance |
34 | ″ | ″ | energy |
35 | ″ | ″ | estimation |
36 | ″ | ″ | features |
37 | ″ | ″ | functional covering |
38 | ″ | ″ | immobilization |
39 | ″ | ″ | important features |
40 | ″ | ″ | instrument |
41 | ″ | ″ | kcal/ |
42 | ″ | ″ | labeling |
43 | ″ | ″ | labeling technique |
44 | ″ | ″ | labels |
45 | ″ | ″ | matrix |
46 | ″ | ″ | metal complexes |
47 | ″ | ″ | metal-containing polymers |
48 | ″ | ″ | metallation |
49 | ″ | ″ | monomers |
50 | ″ | ″ | nitroxyl |
51 | ″ | ″ | nitroxyl radicals |
52 | ″ | ″ | polyethylene |
53 | ″ | ″ | polymer 1 |
54 | ″ | ″ | polymer carrier |
55 | ″ | ″ | polymer matrix |
56 | ″ | ″ | polymerization |
57 | ″ | ″ | polymers |
58 | ″ | ″ | radicals |
59 | ″ | ″ | range 100 |
60 | ″ | ″ | rotational activation energy |
61 | ″ | ″ | spin labeling |
62 | ″ | ″ | spin labeling technique |
63 | ″ | ″ | spin labels |
64 | ″ | ″ | spin-labeled systems |
65 | ″ | ″ | stable nitroxyl |
66 | ″ | ″ | system |
67 | ″ | ″ | technique |
68 | ″ | ″ | temperature range 100 |
69 | ″ | ″ | tetramethyl-4 |
70 | ″ | ″ | topochemical characteristics |
71 | ″ | ″ | topochemistry |
72 | ″ | ″ | vinylpyridine |
73 | ″ | schema:name | Spin Labels as the Instrument for Analysis of Topochemistry of Polymer-Immobilized Ziegler Catalytic Systems |
74 | ″ | schema:pagination | 1-22 |
75 | ″ | schema:productId | N919a4eac4e0f47d8ab2059ddb4b4deef |
76 | ″ | ″ | Nb31c3fb6b174472981b932b2093dce90 |
77 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015667848 |
78 | ″ | ″ | https://doi.org/10.1023/a:1009494915016 |
79 | ″ | schema:sdDatePublished | 2022-05-20T07:21 |
80 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
81 | ″ | schema:sdPublisher | N8f0cada846ee45c5b7f1eb7d1da0337f |
82 | ″ | schema:url | https://doi.org/10.1023/a:1009494915016 |
83 | ″ | sgo:license | sg:explorer/license/ |
84 | ″ | sgo:sdDataset | articles |
85 | ″ | rdf:type | schema:ScholarlyArticle |
86 | N235b4e6a02ff452fb0392255897eceef | schema:affiliation | grid-institutes:grid.418949.9 |
87 | ″ | schema:familyName | Bravaya |
88 | ″ | schema:givenName | N. M. |
89 | ″ | rdf:type | schema:Person |
90 | N41fd277b8ea74e75af96953b053841b5 | rdf:first | N235b4e6a02ff452fb0392255897eceef |
91 | ″ | rdf:rest | N80ee6984aa844b87b6e5cdc425cf9371 |
92 | N80ee6984aa844b87b6e5cdc425cf9371 | rdf:first | sg:person.016403071561.84 |
93 | ″ | rdf:rest | rdf:nil |
94 | N8f0cada846ee45c5b7f1eb7d1da0337f | schema:name | Springer Nature - SN SciGraph project |
95 | ″ | rdf:type | schema:Organization |
96 | N919a4eac4e0f47d8ab2059ddb4b4deef | schema:name | dimensions_id |
97 | ″ | schema:value | pub.1015667848 |
98 | ″ | rdf:type | schema:PropertyValue |
99 | Nb31c3fb6b174472981b932b2093dce90 | schema:name | doi |
100 | ″ | schema:value | 10.1023/a:1009494915016 |
101 | ″ | rdf:type | schema:PropertyValue |
102 | Ncc354c6217e24f23baada3fd1011527c | schema:volumeNumber | 10 |
103 | ″ | rdf:type | schema:PublicationVolume |
104 | Neaae1c96e0cf44beafcb0498e51595a5 | schema:issueNumber | 1 |
105 | ″ | rdf:type | schema:PublicationIssue |
106 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Chemical Sciences |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | anzsrc-for:0303 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Macromolecular and Materials Chemistry |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | sg:journal.1047541 | schema:issn | 1574-1443 |
113 | ″ | ″ | 1574-1451 |
114 | ″ | schema:name | Journal of Inorganic and Organometallic Polymers and Materials |
115 | ″ | schema:publisher | Springer Nature |
116 | ″ | rdf:type | schema:Periodical |
117 | sg:person.016403071561.84 | schema:affiliation | grid-institutes:grid.418949.9 |
118 | ″ | schema:familyName | Pomogailo |
119 | ″ | schema:givenName | A. D. |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403071561.84 |
121 | ″ | rdf:type | schema:Person |
122 | grid-institutes:grid.418949.9 | schema:alternateName | Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka Moscow Region, Russia |
123 | ″ | schema:name | Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka Moscow Region, Russia |
124 | ″ | rdf:type | schema:Organization |