Resistant selection of the smoothing parameter for smoothing splines View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-04

AUTHORS

Eva Cantoni, Elvezio Ronchetti

ABSTRACT

Robust automatic selection techniques for the smoothing parameter of a smoothing spline are introduced. They are based on a robust predictive error criterion and can be viewed as robust versions of Cp and cross-validation. They lead to smoothing splines which are stable and reliable in terms of mean squared error over a large spectrum of model distributions. More... »

PAGES

141-146

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1008975231866

DOI

http://dx.doi.org/10.1023/a:1008975231866

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012829576


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Department of Econometrics, University of Geneva, CH-1211, Geneva 4, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cantoni", 
        "givenName": "Eva", 
        "id": "sg:person.07711000235.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07711000235.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Department of Econometrics, University of Geneva, CH-1211, Geneva 4, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ronchetti", 
        "givenName": "Elvezio", 
        "id": "sg:person.012507417265.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012507417265.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/10485259308832562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009182421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-438150-6.50009-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012732165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-9473(91)90051-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025821051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1992.10476260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1997.10474057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/73.3.625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0902013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176346159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408057"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-04", 
    "datePublishedReg": "2001-04-01", 
    "description": "Robust automatic selection techniques for the smoothing parameter of a smoothing spline are introduced. They are based on a robust predictive error criterion and can be viewed as robust versions of Cp and cross-validation. They lead to smoothing splines which are stable and reliable in terms of mean squared error over a large spectrum of model distributions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1008975231866", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327447", 
        "issn": [
          "0960-3174", 
          "1573-1375"
        ], 
        "name": "Statistics and Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Resistant selection of the smoothing parameter for smoothing splines", 
    "pagination": "141-146", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d1e47f4b535a09b7b9f2f803f5f89411da18e0c1dad662e7158087843e2527a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1008975231866"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012829576"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1008975231866", 
      "https://app.dimensions.ai/details/publication/pub.1012829576"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1008975231866"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008975231866'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008975231866'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008975231866'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008975231866'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1008975231866 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc107056f60d846fdb28b23182838ea17
4 schema:citation https://doi.org/10.1016/0167-9473(91)90051-3
5 https://doi.org/10.1016/b978-0-12-438150-6.50009-1
6 https://doi.org/10.1080/01621459.1992.10476260
7 https://doi.org/10.1080/01621459.1997.10474057
8 https://doi.org/10.1080/10485259308832562
9 https://doi.org/10.1093/biomet/73.3.625
10 https://doi.org/10.1137/0902013
11 https://doi.org/10.1214/aos/1176346159
12 schema:datePublished 2001-04
13 schema:datePublishedReg 2001-04-01
14 schema:description Robust automatic selection techniques for the smoothing parameter of a smoothing spline are introduced. They are based on a robust predictive error criterion and can be viewed as robust versions of Cp and cross-validation. They lead to smoothing splines which are stable and reliable in terms of mean squared error over a large spectrum of model distributions.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N0e4ad1a653fa4f258777687744310a03
19 Nc506cb017ef4444c912822f9402447af
20 sg:journal.1327447
21 schema:name Resistant selection of the smoothing parameter for smoothing splines
22 schema:pagination 141-146
23 schema:productId N0976f3b507354433889616b333bc3b8e
24 N194375a1f59941e8a852ba69952e9669
25 N22e37195231a4453879fb028f1cbcc51
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012829576
27 https://doi.org/10.1023/a:1008975231866
28 schema:sdDatePublished 2019-04-11T01:04
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nc1612ef57b20499bb8a0c973e1f50139
31 schema:url http://link.springer.com/10.1023/A:1008975231866
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0976f3b507354433889616b333bc3b8e schema:name dimensions_id
36 schema:value pub.1012829576
37 rdf:type schema:PropertyValue
38 N0e4ad1a653fa4f258777687744310a03 schema:issueNumber 2
39 rdf:type schema:PublicationIssue
40 N194375a1f59941e8a852ba69952e9669 schema:name doi
41 schema:value 10.1023/a:1008975231866
42 rdf:type schema:PropertyValue
43 N22e37195231a4453879fb028f1cbcc51 schema:name readcube_id
44 schema:value 3d1e47f4b535a09b7b9f2f803f5f89411da18e0c1dad662e7158087843e2527a
45 rdf:type schema:PropertyValue
46 N42809b1ecb464afeb0b78f36d4bc628e rdf:first sg:person.012507417265.19
47 rdf:rest rdf:nil
48 Nc107056f60d846fdb28b23182838ea17 rdf:first sg:person.07711000235.45
49 rdf:rest N42809b1ecb464afeb0b78f36d4bc628e
50 Nc1612ef57b20499bb8a0c973e1f50139 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Nc506cb017ef4444c912822f9402447af schema:volumeNumber 11
53 rdf:type schema:PublicationVolume
54 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
55 schema:name Information and Computing Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
58 schema:name Artificial Intelligence and Image Processing
59 rdf:type schema:DefinedTerm
60 sg:journal.1327447 schema:issn 0960-3174
61 1573-1375
62 schema:name Statistics and Computing
63 rdf:type schema:Periodical
64 sg:person.012507417265.19 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
65 schema:familyName Ronchetti
66 schema:givenName Elvezio
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012507417265.19
68 rdf:type schema:Person
69 sg:person.07711000235.45 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
70 schema:familyName Cantoni
71 schema:givenName Eva
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07711000235.45
73 rdf:type schema:Person
74 https://doi.org/10.1016/0167-9473(91)90051-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025821051
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/b978-0-12-438150-6.50009-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012732165
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1080/01621459.1992.10476260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304344
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1080/01621459.1997.10474057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305306
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1080/10485259308832562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009182421
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1093/biomet/73.3.625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419637
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1137/0902013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855533
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1214/aos/1176346159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408057
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.8591.5 schema:alternateName University of Geneva
91 schema:name Department of Econometrics, University of Geneva, CH-1211, Geneva 4, Switzerland
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...