Sources of Phytoestrogen Exposure among Non-Asian Women in California, USA View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-04

AUTHORS

Pamela L. Horn-Ross, Marion Lee, Esther M. John, Jocelyn Koo

ABSTRACT

OBJECTIVE: We recently described the development of a comprehensive database for assessing phytoestrogen exposure in epidemiologic studies. This paper describes the first application of this database and the primary sources of phytoestrogen consumption in non-Asian women. METHODS: Four hundred and forty-seven randomly selected African-American, Latina, and white women, ages 50-79 years, residing in California's San Francisco Bay Area and participating as controls in an ongoing population-based case-control study of breast cancer, were included in the present analysis. Average daily consumption of each of seven phytoestrogenic compounds was determined for each woman by combining the values from the new database with food consumption reported on a food-frequency questionnaire. RESULTS: Phytoestrogens in the non-Asian Bay Area diet appear to come primarily from: (1) traditional soy-based foods (e.g. tofu and soy milk); (2) "hidden" sources of soy (e.g. foods containing added soy protein isolate, soy concentrate, or soy flour, e.g. many brands of doughnuts and white bread); and (3) a variety of foods which contain only low to moderate amounts of phytoestrogens per 100 grams but which are frequently consumed (e.g. coffee and orange juice). CONCLUSIONS: In the absence of a comprehensive assessment of various phytoestrogens in a wide variety of foods, epidemiologic studies could suffer from the effects of uncontrolled confounding by unmeasured sources of phytoestrogen exposure potentially leading to biased estimates of effect and misinterpretation of findings. More... »

PAGES

299-302

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1008968003575

DOI

http://dx.doi.org/10.1023/a:1008968003575

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009529157

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10843441


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "African Americans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "California", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Estrogens, Non-Steroidal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "European Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hispanic Americans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Isoflavones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phytoestrogens", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Preparations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plants, Edible", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Women's Health", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cancer Prevention Institute of California", 
          "id": "https://www.grid.ac/institutes/grid.280669.3", 
          "name": [
            "Northern California Cancer Center, 32960 Alvarado-Niles Rd, Suite 600, 94587, Union City, CA, USA;"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horn-Ross", 
        "givenName": "Pamela L.", 
        "id": "sg:person.011400723277.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011400723277.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California System", 
          "id": "https://www.grid.ac/institutes/grid.30389.31", 
          "name": [
            "Northern California Cancer Center, 32960 Alvarado-Niles Rd, Suite 600, 94587, Union City, CA, USA;", 
            "Department of Epidemiology and Biostatistics, University of California School of Medicine, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Marion", 
        "id": "sg:person.0656456075.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656456075.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Prevention Institute of California", 
          "id": "https://www.grid.ac/institutes/grid.280669.3", 
          "name": [
            "Northern California Cancer Center, 32960 Alvarado-Niles Rd, Suite 600, 94587, Union City, CA, USA;"
          ], 
          "type": "Organization"
        }, 
        "familyName": "John", 
        "givenName": "Esther M.", 
        "id": "sg:person.01156677161.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156677161.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Prevention Institute of California", 
          "id": "https://www.grid.ac/institutes/grid.280669.3", 
          "name": [
            "Northern California Cancer Center, 32960 Alvarado-Niles Rd, Suite 600, 94587, Union City, CA, USA;"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koo", 
        "givenName": "Jocelyn", 
        "id": "sg:person.01160305242.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160305242.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0960-0760(92)90359-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005592871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01635589409514310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005608956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008995606699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009264717", 
          "https://doi.org/10.1023/a:1008995606699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-4731(86)90310-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022128607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-4731(86)90310-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022128607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(97)01339-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039373296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00054304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043216328", 
          "https://doi.org/10.1007/bf00054304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00054304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043216328", 
          "https://doi.org/10.1007/bf00054304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/83.8.541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059817103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075490585", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jn/125.3_suppl.757s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082550343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083088982", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-04", 
    "datePublishedReg": "2000-04-01", 
    "description": "OBJECTIVE: We recently described the development of a comprehensive database for assessing phytoestrogen exposure in epidemiologic studies. This paper describes the first application of this database and the primary sources of phytoestrogen consumption in non-Asian women.\nMETHODS: Four hundred and forty-seven randomly selected African-American, Latina, and white women, ages 50-79 years, residing in California's San Francisco Bay Area and participating as controls in an ongoing population-based case-control study of breast cancer, were included in the present analysis. Average daily consumption of each of seven phytoestrogenic compounds was determined for each woman by combining the values from the new database with food consumption reported on a food-frequency questionnaire.\nRESULTS: Phytoestrogens in the non-Asian Bay Area diet appear to come primarily from: (1) traditional soy-based foods (e.g. tofu and soy milk); (2) \"hidden\" sources of soy (e.g. foods containing added soy protein isolate, soy concentrate, or soy flour, e.g. many brands of doughnuts and white bread); and (3) a variety of foods which contain only low to moderate amounts of phytoestrogens per 100 grams but which are frequently consumed (e.g. coffee and orange juice).\nCONCLUSIONS: In the absence of a comprehensive assessment of various phytoestrogens in a wide variety of foods, epidemiologic studies could suffer from the effects of uncontrolled confounding by unmeasured sources of phytoestrogen exposure potentially leading to biased estimates of effect and misinterpretation of findings.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1008968003575", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2568349", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2471954", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1100917", 
        "issn": [
          "0957-5243", 
          "1573-7225"
        ], 
        "name": "Cancer Causes & Control", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Sources of Phytoestrogen Exposure among Non-Asian Women in California, USA", 
    "pagination": "299-302", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d64b6ac41dbe3888755d7c9ed6db06c3288d2c587b4212a4c040a89b2243460"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10843441"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9100846"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1008968003575"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009529157"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1008968003575", 
      "https://app.dimensions.ai/details/publication/pub.1009529157"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1008968003575"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008968003575'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008968003575'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008968003575'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008968003575'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      56 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1008968003575 schema:about N1f4e4441c8c44b0a8ff4b073c453845a
2 N21ce253daf4041218ef05eeab1d27cb2
3 N3ad90339443d4c62a728a7fc5c754302
4 N3ddd06b04ce04f6b9510878e96cc44b2
5 N638f1fed25874e4d9b36a34de9d3acef
6 N82bb20ba495f48e6b7028bb736c9a22a
7 N8a77aed9639f49f8975ce986ace43720
8 N8be3ba57be1a41c197069e2e27afab8b
9 N93d8074dfb67441291ce8c5efa30bc28
10 N947614c119444ed6b45a540e9a296aa0
11 N9e8aaba925464181b42d884887bbbd85
12 N9f3eab2773474d7080a72e3d76e43cd9
13 Naf8f4d68fb7647d9bc3e9ee8aebf8ea6
14 Nafb32082c7994755a0df5cf022414da4
15 Nd3ec7b1b55a64d3fa2586defc421cb9e
16 Ndfd9406cac40492a91a91becf504f9c6
17 Nff525cd0885540f2bb8730b8fc67bc0c
18 anzsrc-for:11
19 anzsrc-for:1117
20 schema:author Nb92fa79e8c1a487b800fc262fe6de024
21 schema:citation sg:pub.10.1007/bf00054304
22 sg:pub.10.1023/a:1008995606699
23 https://app.dimensions.ai/details/publication/pub.1075490585
24 https://app.dimensions.ai/details/publication/pub.1083088982
25 https://doi.org/10.1016/0022-4731(86)90310-9
26 https://doi.org/10.1016/0960-0760(92)90359-q
27 https://doi.org/10.1016/s0140-6736(97)01339-1
28 https://doi.org/10.1080/01635589409514310
29 https://doi.org/10.1093/jn/125.3_suppl.757s
30 https://doi.org/10.1093/jnci/83.8.541
31 schema:datePublished 2000-04
32 schema:datePublishedReg 2000-04-01
33 schema:description OBJECTIVE: We recently described the development of a comprehensive database for assessing phytoestrogen exposure in epidemiologic studies. This paper describes the first application of this database and the primary sources of phytoestrogen consumption in non-Asian women. METHODS: Four hundred and forty-seven randomly selected African-American, Latina, and white women, ages 50-79 years, residing in California's San Francisco Bay Area and participating as controls in an ongoing population-based case-control study of breast cancer, were included in the present analysis. Average daily consumption of each of seven phytoestrogenic compounds was determined for each woman by combining the values from the new database with food consumption reported on a food-frequency questionnaire. RESULTS: Phytoestrogens in the non-Asian Bay Area diet appear to come primarily from: (1) traditional soy-based foods (e.g. tofu and soy milk); (2) "hidden" sources of soy (e.g. foods containing added soy protein isolate, soy concentrate, or soy flour, e.g. many brands of doughnuts and white bread); and (3) a variety of foods which contain only low to moderate amounts of phytoestrogens per 100 grams but which are frequently consumed (e.g. coffee and orange juice). CONCLUSIONS: In the absence of a comprehensive assessment of various phytoestrogens in a wide variety of foods, epidemiologic studies could suffer from the effects of uncontrolled confounding by unmeasured sources of phytoestrogen exposure potentially leading to biased estimates of effect and misinterpretation of findings.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N402bd151ae27448a8b1c1cb83011e7ef
38 N55d336da982b4dd785ab93d52e8753ff
39 sg:journal.1100917
40 schema:name Sources of Phytoestrogen Exposure among Non-Asian Women in California, USA
41 schema:pagination 299-302
42 schema:productId N5de8cb9323404c3ea9124936afa0a8ca
43 N66cb12c36cd64272840d47a5a7e554bd
44 N86aad25ce18f4e8abbd16734932e6f03
45 N8dbd5b4ce5bc45299ef99a0099f21c58
46 Nf2591053e9c449888911ad86262c1aea
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009529157
48 https://doi.org/10.1023/a:1008968003575
49 schema:sdDatePublished 2019-04-11T01:57
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N1e17660a807f4af29882300497d1f447
52 schema:url http://link.springer.com/10.1023/A:1008968003575
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N00d32859e8fc44efa3926a701c1cb041 rdf:first sg:person.01160305242.38
57 rdf:rest rdf:nil
58 N1782e8d33bc34da6ae41b77bc48269b0 rdf:first sg:person.01156677161.00
59 rdf:rest N00d32859e8fc44efa3926a701c1cb041
60 N1e17660a807f4af29882300497d1f447 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N1f4e4441c8c44b0a8ff4b073c453845a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name California
64 rdf:type schema:DefinedTerm
65 N21ce253daf4041218ef05eeab1d27cb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Plant Preparations
67 rdf:type schema:DefinedTerm
68 N3ad90339443d4c62a728a7fc5c754302 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Surveys and Questionnaires
70 rdf:type schema:DefinedTerm
71 N3ddd06b04ce04f6b9510878e96cc44b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Women's Health
73 rdf:type schema:DefinedTerm
74 N402bd151ae27448a8b1c1cb83011e7ef schema:volumeNumber 11
75 rdf:type schema:PublicationVolume
76 N55d336da982b4dd785ab93d52e8753ff schema:issueNumber 4
77 rdf:type schema:PublicationIssue
78 N5de8cb9323404c3ea9124936afa0a8ca schema:name nlm_unique_id
79 schema:value 9100846
80 rdf:type schema:PropertyValue
81 N638f1fed25874e4d9b36a34de9d3acef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Plants, Edible
83 rdf:type schema:DefinedTerm
84 N66cb12c36cd64272840d47a5a7e554bd schema:name dimensions_id
85 schema:value pub.1009529157
86 rdf:type schema:PropertyValue
87 N82bb20ba495f48e6b7028bb736c9a22a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Middle Aged
89 rdf:type schema:DefinedTerm
90 N86aad25ce18f4e8abbd16734932e6f03 schema:name readcube_id
91 schema:value 2d64b6ac41dbe3888755d7c9ed6db06c3288d2c587b4212a4c040a89b2243460
92 rdf:type schema:PropertyValue
93 N8a77aed9639f49f8975ce986ace43720 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Phytoestrogens
95 rdf:type schema:DefinedTerm
96 N8be3ba57be1a41c197069e2e27afab8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name European Continental Ancestry Group
98 rdf:type schema:DefinedTerm
99 N8dbd5b4ce5bc45299ef99a0099f21c58 schema:name doi
100 schema:value 10.1023/a:1008968003575
101 rdf:type schema:PropertyValue
102 N93d8074dfb67441291ce8c5efa30bc28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Humans
104 rdf:type schema:DefinedTerm
105 N947614c119444ed6b45a540e9a296aa0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Hispanic Americans
107 rdf:type schema:DefinedTerm
108 N9e8aaba925464181b42d884887bbbd85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Estrogens, Non-Steroidal
110 rdf:type schema:DefinedTerm
111 N9f3eab2773474d7080a72e3d76e43cd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Female
113 rdf:type schema:DefinedTerm
114 Naf8f4d68fb7647d9bc3e9ee8aebf8ea6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Aged
116 rdf:type schema:DefinedTerm
117 Nafb32082c7994755a0df5cf022414da4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name African Americans
119 rdf:type schema:DefinedTerm
120 Nb92fa79e8c1a487b800fc262fe6de024 rdf:first sg:person.011400723277.64
121 rdf:rest Nf8b3a83117db401ab17e4736e4a8861a
122 Nd3ec7b1b55a64d3fa2586defc421cb9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Diet
124 rdf:type schema:DefinedTerm
125 Ndfd9406cac40492a91a91becf504f9c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Databases as Topic
127 rdf:type schema:DefinedTerm
128 Nf2591053e9c449888911ad86262c1aea schema:name pubmed_id
129 schema:value 10843441
130 rdf:type schema:PropertyValue
131 Nf8b3a83117db401ab17e4736e4a8861a rdf:first sg:person.0656456075.34
132 rdf:rest N1782e8d33bc34da6ae41b77bc48269b0
133 Nff525cd0885540f2bb8730b8fc67bc0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Isoflavones
135 rdf:type schema:DefinedTerm
136 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
137 schema:name Medical and Health Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
140 schema:name Public Health and Health Services
141 rdf:type schema:DefinedTerm
142 sg:grant.2471954 http://pending.schema.org/fundedItem sg:pub.10.1023/a:1008968003575
143 rdf:type schema:MonetaryGrant
144 sg:grant.2568349 http://pending.schema.org/fundedItem sg:pub.10.1023/a:1008968003575
145 rdf:type schema:MonetaryGrant
146 sg:journal.1100917 schema:issn 0957-5243
147 1573-7225
148 schema:name Cancer Causes & Control
149 rdf:type schema:Periodical
150 sg:person.011400723277.64 schema:affiliation https://www.grid.ac/institutes/grid.280669.3
151 schema:familyName Horn-Ross
152 schema:givenName Pamela L.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011400723277.64
154 rdf:type schema:Person
155 sg:person.01156677161.00 schema:affiliation https://www.grid.ac/institutes/grid.280669.3
156 schema:familyName John
157 schema:givenName Esther M.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156677161.00
159 rdf:type schema:Person
160 sg:person.01160305242.38 schema:affiliation https://www.grid.ac/institutes/grid.280669.3
161 schema:familyName Koo
162 schema:givenName Jocelyn
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160305242.38
164 rdf:type schema:Person
165 sg:person.0656456075.34 schema:affiliation https://www.grid.ac/institutes/grid.30389.31
166 schema:familyName Lee
167 schema:givenName Marion
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656456075.34
169 rdf:type schema:Person
170 sg:pub.10.1007/bf00054304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043216328
171 https://doi.org/10.1007/bf00054304
172 rdf:type schema:CreativeWork
173 sg:pub.10.1023/a:1008995606699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009264717
174 https://doi.org/10.1023/a:1008995606699
175 rdf:type schema:CreativeWork
176 https://app.dimensions.ai/details/publication/pub.1075490585 schema:CreativeWork
177 https://app.dimensions.ai/details/publication/pub.1083088982 schema:CreativeWork
178 https://doi.org/10.1016/0022-4731(86)90310-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022128607
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/0960-0760(92)90359-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1005592871
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0140-6736(97)01339-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039373296
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/01635589409514310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005608956
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/jn/125.3_suppl.757s schema:sameAs https://app.dimensions.ai/details/publication/pub.1082550343
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/jnci/83.8.541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059817103
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.280669.3 schema:alternateName Cancer Prevention Institute of California
191 schema:name Northern California Cancer Center, 32960 Alvarado-Niles Rd, Suite 600, 94587, Union City, CA, USA;
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.30389.31 schema:alternateName University of California System
194 schema:name Department of Epidemiology and Biostatistics, University of California School of Medicine, San Francisco, CA, USA
195 Northern California Cancer Center, 32960 Alvarado-Niles Rd, Suite 600, 94587, Union City, CA, USA;
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...