A transgenic perspective on plant functional genomics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-08

AUTHORS

Andy Pereira

ABSTRACT

Transgenic crops are very much in the news due to the increasing public debate on their acceptance. In the scientific community though, transgenic plants are proving to be powerful tools to study various aspects of plant sciences. The emerging scientific revolution sparked by genomics based technologies is producing enormous amounts of DNA sequence information that, together with plant transformation methodology, is opening up new experimental opportunities for functional genomics analysis. An overview is provided here on the use of transgenic technology for the functional analysis of plant genes in model plants and a link made to their utilization in transgenic crops. In transgenic plants, insertional mutagenesis using heterologous maize transposons or Agrobacterium mediated T-DNA insertions, have been valuable tools for the identification and isolation of genes that display a mutant phenotype. To discover functions of genes that do not display phenotypes when mutated, insertion sequences have been engineered to monitor or change the expression pattern of adjacent genes. These gene detector insertions can detect adjacent promoters, enhancers or gene exons and precisely reflect the expression pattern of the tagged gene. Activation tag insertions can mis-express the adjacent gene and confer dominant phenotypes that help bridge the phenotype gap. Employment of various forms of gene silencing technology broadens the scope of recovering knockout phenotypes for genes with redundant function. All these transgenic strategies describing gene-phenotype relationships can be addressed by high throughput reverse genetics methods that will help provide functions to the genes discovered by genome sequencing. The gene functions discovered by insertional mutagenesis and silencing strategies along with expression pattern analysis will provide an integrated functional genomics perspective and offer unique applications in transgenic crops. More... »

PAGES

245-260

References to SciGraph publications

  • 1995-09. Insertional mutagenesis and promoter trapping in plants for the isolation of genes and the study of development in TRANSGENIC RESEARCH
  • 1999-11. Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome in NATURE GENETICS
  • 1999-03. Proteomics: translating genomics into products? in NATURE BIOTECHNOLOGY
  • 1990-05. A genetic analysis of mutations recovered from tomato following Agrobacterium-mediated transformation with the maize transposahle elements Activator and Dissociation in THEORETICAL AND APPLIED GENETICS
  • 1993-06. Transposon tagging of a male sterility gene in Arabidopsis in NATURE
  • 1999-12. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana in NATURE
  • 1990-09-01. Entrapment Vectors: A New Tool for Mammalian Genetics in BIO/TECHNOLOGY
  • 1999-12. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana in NATURE
  • 1993-11. Prospects of applying a combination of DNA transposition and site-specific recombination in plants: a strategy for gene identification and cloning in PLANT MOLECULAR BIOLOGY
  • 1995-10. A developmental switch sufficient for flower initiation in diverse plants in NATURE
  • 1999-10. Genome-wide mapping with biallelic markers in Arabidopsis thaliana in NATURE GENETICS
  • 1999-03. Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes in THEORETICAL AND APPLIED GENETICS
  • 1998-08. Overview of DNA chip technology in MOLECULAR BREEDING
  • 1997-05. Overview of the yeast genome in NATURE
  • 1992-12. T-DNA insertional mutagenesis in Arabidopsis in PLANT MOLECULAR BIOLOGY
  • 1987-09. Functional inactivation of genes by dominant negative mutations in NATURE
  • 1992-06. Development of an efficient two-element transposon tagging system in Arabidopsis thaliana in MOLECULAR GENETICS AND GENOMICS
  • 1997-09. Retrotransposons of rice: their regulation and use for genome analysis in PLANT MOLECULAR BIOLOGY
  • 1999-07. ‘Green revolution’ genes encode mutant gibberellin response modulators in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1008967916498

    DOI

    http://dx.doi.org/10.1023/a:1008967916498

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006709800

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11131004


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crops, Agricultural", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutagenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plants, Genetically Modified", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Plant Research International, P.O. Box 16, 6700 AA, Wageningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Plant Research International, P.O. Box 16, 6700 AA, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pereira", 
            "givenName": "Andy", 
            "id": "sg:person.01344430566.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344430566.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/387s007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083096755", 
              "https://doi.org/10.1038/387s007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005774705893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038751451", 
              "https://doi.org/10.1023/a:1005774705893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/363715a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038360002", 
              "https://doi.org/10.1038/363715a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/377495a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004818489", 
              "https://doi.org/10.1038/377495a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00226880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027301807", 
              "https://doi.org/10.1007/bf00226880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0990-827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038917012", 
              "https://doi.org/10.1038/nbt0990-827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/22307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033258815", 
              "https://doi.org/10.1038/22307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009654300686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004421969", 
              "https://doi.org/10.1023/a:1009654300686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00265443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000158433", 
              "https://doi.org/10.1007/bf00265443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00019300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043295724", 
              "https://doi.org/10.1007/bf00019300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/13833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031761902", 
              "https://doi.org/10.1038/13833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/15479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050854584", 
              "https://doi.org/10.1038/15479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033864616", 
              "https://doi.org/10.1007/s001220051115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/45471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014984168", 
              "https://doi.org/10.1038/45471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00027166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049183686", 
              "https://doi.org/10.1007/bf00027166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/47134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030062261", 
              "https://doi.org/10.1038/47134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/6972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028120489", 
              "https://doi.org/10.1038/6972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01972526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027883330", 
              "https://doi.org/10.1007/bf01972526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/329219a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005321784", 
              "https://doi.org/10.1038/329219a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-08", 
        "datePublishedReg": "2000-08-01", 
        "description": "Transgenic crops are very much in the news due to the increasing public debate on their acceptance. In the scientific community though, transgenic plants are proving to be powerful tools to study various aspects of plant sciences. The emerging scientific revolution sparked by genomics based technologies is producing enormous amounts of DNA sequence information that, together with plant transformation methodology, is opening up new experimental opportunities for functional genomics analysis. An overview is provided here on the use of transgenic technology for the functional analysis of plant genes in model plants and a link made to their utilization in transgenic crops. In transgenic plants, insertional mutagenesis using heterologous maize transposons or Agrobacterium mediated T-DNA insertions, have been valuable tools for the identification and isolation of genes that display a mutant phenotype. To discover functions of genes that do not display phenotypes when mutated, insertion sequences have been engineered to monitor or change the expression pattern of adjacent genes. These gene detector insertions can detect adjacent promoters, enhancers or gene exons and precisely reflect the expression pattern of the tagged gene. Activation tag insertions can mis-express the adjacent gene and confer dominant phenotypes that help bridge the phenotype gap. Employment of various forms of gene silencing technology broadens the scope of recovering knockout phenotypes for genes with redundant function. All these transgenic strategies describing gene-phenotype relationships can be addressed by high throughput reverse genetics methods that will help provide functions to the genes discovered by genome sequencing. The gene functions discovered by insertional mutagenesis and silencing strategies along with expression pattern analysis will provide an integrated functional genomics perspective and offer unique applications in transgenic crops.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1008967916498", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1102526", 
            "issn": [
              "0962-8819", 
              "1573-9368"
            ], 
            "name": "Transgenic Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4-5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "transgenic crops", 
          "transgenic plants", 
          "adjacent genes", 
          "insertional mutagenesis", 
          "expression patterns", 
          "functional genomics perspective", 
          "plant functional genomics", 
          "gene-phenotype relationships", 
          "isolation of genes", 
          "expression pattern analysis", 
          "functional genomic analysis", 
          "function of genes", 
          "DNA sequence information", 
          "reverse genetics method", 
          "form of genes", 
          "plant genes", 
          "maize transposons", 
          "model plant", 
          "mutant phenotype", 
          "DNA insertion", 
          "genomic perspective", 
          "functional genomics", 
          "gene function", 
          "phenotype gap", 
          "redundant functions", 
          "genomic analysis", 
          "knockout phenotype", 
          "plant science", 
          "transgenic strategies", 
          "genome sequencing", 
          "transgenic technology", 
          "adjacent promoters", 
          "sequence information", 
          "genetic methods", 
          "dominant phenotype", 
          "functional analysis", 
          "genes", 
          "transgenic perspective", 
          "insertion sequence", 
          "new experimental opportunities", 
          "tag insertion", 
          "gene exons", 
          "plants", 
          "genomics", 
          "phenotype", 
          "crops", 
          "mutagenesis", 
          "experimental opportunities", 
          "transformation methodology", 
          "Agrobacterium", 
          "transposon", 
          "powerful tool", 
          "promoter", 
          "exons", 
          "insertion", 
          "sequencing", 
          "valuable tool", 
          "enhancer", 
          "sequence", 
          "function", 
          "pattern analysis", 
          "isolation", 
          "patterns", 
          "scientific community", 
          "identification", 
          "enormous amount", 
          "analysis", 
          "community", 
          "strategies", 
          "tool", 
          "form", 
          "link", 
          "amount", 
          "utilization", 
          "overview", 
          "relationship", 
          "unique applications", 
          "aspects", 
          "technology", 
          "opportunities", 
          "information", 
          "MI", 
          "perspective", 
          "use", 
          "gap", 
          "applications", 
          "scientific revolution", 
          "revolution", 
          "method", 
          "science", 
          "scope", 
          "methodology", 
          "debate", 
          "news", 
          "acceptance", 
          "employment", 
          "public debate", 
          "plant transformation methodology", 
          "heterologous maize transposons", 
          "gene detector insertions", 
          "detector insertions", 
          "Activation tag insertions", 
          "high throughput reverse genetics methods", 
          "throughput reverse genetics methods", 
          "integrated functional genomics perspective"
        ], 
        "name": "A transgenic perspective on plant functional genomics", 
        "pagination": "245-260", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006709800"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1008967916498"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11131004"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1008967916498", 
          "https://app.dimensions.ai/details/publication/pub.1006709800"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_312.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1008967916498"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008967916498'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008967916498'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008967916498'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008967916498'


     

    This table displays all metadata directly associated to this object as RDF triples.

    263 TRIPLES      22 PREDICATES      156 URIs      128 LITERALS      11 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1008967916498 schema:about N3a182bff1ec04a20a08f4c9f0d691024
    2 N5dc3032204984547b87a078f70c38a5c
    3 Nb975fa644629476d83367ac41dfe56e7
    4 Ncb3e47856a5a4faf84bdb5c34d9ae365
    5 anzsrc-for:06
    6 anzsrc-for:0604
    7 anzsrc-for:0607
    8 schema:author N8f6f09393b7d487f83e5ed3c841755d8
    9 schema:citation sg:pub.10.1007/bf00019300
    10 sg:pub.10.1007/bf00027166
    11 sg:pub.10.1007/bf00226880
    12 sg:pub.10.1007/bf00265443
    13 sg:pub.10.1007/bf01972526
    14 sg:pub.10.1007/s001220051115
    15 sg:pub.10.1023/a:1005774705893
    16 sg:pub.10.1023/a:1009654300686
    17 sg:pub.10.1038/13833
    18 sg:pub.10.1038/15479
    19 sg:pub.10.1038/22307
    20 sg:pub.10.1038/329219a0
    21 sg:pub.10.1038/363715a0
    22 sg:pub.10.1038/377495a0
    23 sg:pub.10.1038/387s007
    24 sg:pub.10.1038/45471
    25 sg:pub.10.1038/47134
    26 sg:pub.10.1038/6972
    27 sg:pub.10.1038/nbt0990-827
    28 schema:datePublished 2000-08
    29 schema:datePublishedReg 2000-08-01
    30 schema:description Transgenic crops are very much in the news due to the increasing public debate on their acceptance. In the scientific community though, transgenic plants are proving to be powerful tools to study various aspects of plant sciences. The emerging scientific revolution sparked by genomics based technologies is producing enormous amounts of DNA sequence information that, together with plant transformation methodology, is opening up new experimental opportunities for functional genomics analysis. An overview is provided here on the use of transgenic technology for the functional analysis of plant genes in model plants and a link made to their utilization in transgenic crops. In transgenic plants, insertional mutagenesis using heterologous maize transposons or Agrobacterium mediated T-DNA insertions, have been valuable tools for the identification and isolation of genes that display a mutant phenotype. To discover functions of genes that do not display phenotypes when mutated, insertion sequences have been engineered to monitor or change the expression pattern of adjacent genes. These gene detector insertions can detect adjacent promoters, enhancers or gene exons and precisely reflect the expression pattern of the tagged gene. Activation tag insertions can mis-express the adjacent gene and confer dominant phenotypes that help bridge the phenotype gap. Employment of various forms of gene silencing technology broadens the scope of recovering knockout phenotypes for genes with redundant function. All these transgenic strategies describing gene-phenotype relationships can be addressed by high throughput reverse genetics methods that will help provide functions to the genes discovered by genome sequencing. The gene functions discovered by insertional mutagenesis and silencing strategies along with expression pattern analysis will provide an integrated functional genomics perspective and offer unique applications in transgenic crops.
    31 schema:genre article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf N3343b4f0f78b4f41a564a1958181fa80
    35 Nebd49e1ba5d54aeb90c9aa4466a920cb
    36 sg:journal.1102526
    37 schema:keywords Activation tag insertions
    38 Agrobacterium
    39 DNA insertion
    40 DNA sequence information
    41 MI
    42 acceptance
    43 adjacent genes
    44 adjacent promoters
    45 amount
    46 analysis
    47 applications
    48 aspects
    49 community
    50 crops
    51 debate
    52 detector insertions
    53 dominant phenotype
    54 employment
    55 enhancer
    56 enormous amount
    57 exons
    58 experimental opportunities
    59 expression pattern analysis
    60 expression patterns
    61 form
    62 form of genes
    63 function
    64 function of genes
    65 functional analysis
    66 functional genomic analysis
    67 functional genomics
    68 functional genomics perspective
    69 gap
    70 gene detector insertions
    71 gene exons
    72 gene function
    73 gene-phenotype relationships
    74 genes
    75 genetic methods
    76 genome sequencing
    77 genomic analysis
    78 genomic perspective
    79 genomics
    80 heterologous maize transposons
    81 high throughput reverse genetics methods
    82 identification
    83 information
    84 insertion
    85 insertion sequence
    86 insertional mutagenesis
    87 integrated functional genomics perspective
    88 isolation
    89 isolation of genes
    90 knockout phenotype
    91 link
    92 maize transposons
    93 method
    94 methodology
    95 model plant
    96 mutagenesis
    97 mutant phenotype
    98 new experimental opportunities
    99 news
    100 opportunities
    101 overview
    102 pattern analysis
    103 patterns
    104 perspective
    105 phenotype
    106 phenotype gap
    107 plant functional genomics
    108 plant genes
    109 plant science
    110 plant transformation methodology
    111 plants
    112 powerful tool
    113 promoter
    114 public debate
    115 redundant functions
    116 relationship
    117 reverse genetics method
    118 revolution
    119 science
    120 scientific community
    121 scientific revolution
    122 scope
    123 sequence
    124 sequence information
    125 sequencing
    126 strategies
    127 tag insertion
    128 technology
    129 throughput reverse genetics methods
    130 tool
    131 transformation methodology
    132 transgenic crops
    133 transgenic perspective
    134 transgenic plants
    135 transgenic strategies
    136 transgenic technology
    137 transposon
    138 unique applications
    139 use
    140 utilization
    141 valuable tool
    142 schema:name A transgenic perspective on plant functional genomics
    143 schema:pagination 245-260
    144 schema:productId N6a9e8eda09a64a2f88d12fe8acca472d
    145 Neda19261c31a4851a5cd548764ebe340
    146 Nf2e690125554403585a9454fbb9b40e0
    147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006709800
    148 https://doi.org/10.1023/a:1008967916498
    149 schema:sdDatePublished 2021-12-01T19:11
    150 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    151 schema:sdPublisher Ne08af1fd56b446afa11fe86403ec5cd1
    152 schema:url https://doi.org/10.1023/a:1008967916498
    153 sgo:license sg:explorer/license/
    154 sgo:sdDataset articles
    155 rdf:type schema:ScholarlyArticle
    156 N3343b4f0f78b4f41a564a1958181fa80 schema:volumeNumber 9
    157 rdf:type schema:PublicationVolume
    158 N3a182bff1ec04a20a08f4c9f0d691024 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Mutagenesis
    160 rdf:type schema:DefinedTerm
    161 N5dc3032204984547b87a078f70c38a5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Plants, Genetically Modified
    163 rdf:type schema:DefinedTerm
    164 N6a9e8eda09a64a2f88d12fe8acca472d schema:name pubmed_id
    165 schema:value 11131004
    166 rdf:type schema:PropertyValue
    167 N8f6f09393b7d487f83e5ed3c841755d8 rdf:first sg:person.01344430566.76
    168 rdf:rest rdf:nil
    169 Nb975fa644629476d83367ac41dfe56e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name DNA, Plant
    171 rdf:type schema:DefinedTerm
    172 Ncb3e47856a5a4faf84bdb5c34d9ae365 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Crops, Agricultural
    174 rdf:type schema:DefinedTerm
    175 Ne08af1fd56b446afa11fe86403ec5cd1 schema:name Springer Nature - SN SciGraph project
    176 rdf:type schema:Organization
    177 Nebd49e1ba5d54aeb90c9aa4466a920cb schema:issueNumber 4-5
    178 rdf:type schema:PublicationIssue
    179 Neda19261c31a4851a5cd548764ebe340 schema:name doi
    180 schema:value 10.1023/a:1008967916498
    181 rdf:type schema:PropertyValue
    182 Nf2e690125554403585a9454fbb9b40e0 schema:name dimensions_id
    183 schema:value pub.1006709800
    184 rdf:type schema:PropertyValue
    185 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    186 schema:name Biological Sciences
    187 rdf:type schema:DefinedTerm
    188 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Genetics
    190 rdf:type schema:DefinedTerm
    191 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    192 schema:name Plant Biology
    193 rdf:type schema:DefinedTerm
    194 sg:journal.1102526 schema:issn 0962-8819
    195 1573-9368
    196 schema:name Transgenic Research
    197 schema:publisher Springer Nature
    198 rdf:type schema:Periodical
    199 sg:person.01344430566.76 schema:affiliation grid-institutes:grid.4818.5
    200 schema:familyName Pereira
    201 schema:givenName Andy
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344430566.76
    203 rdf:type schema:Person
    204 sg:pub.10.1007/bf00019300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043295724
    205 https://doi.org/10.1007/bf00019300
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/bf00027166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049183686
    208 https://doi.org/10.1007/bf00027166
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/bf00226880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027301807
    211 https://doi.org/10.1007/bf00226880
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/bf00265443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000158433
    214 https://doi.org/10.1007/bf00265443
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/bf01972526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027883330
    217 https://doi.org/10.1007/bf01972526
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s001220051115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033864616
    220 https://doi.org/10.1007/s001220051115
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1023/a:1005774705893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038751451
    223 https://doi.org/10.1023/a:1005774705893
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1023/a:1009654300686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004421969
    226 https://doi.org/10.1023/a:1009654300686
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/13833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031761902
    229 https://doi.org/10.1038/13833
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/15479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050854584
    232 https://doi.org/10.1038/15479
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/22307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033258815
    235 https://doi.org/10.1038/22307
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/329219a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005321784
    238 https://doi.org/10.1038/329219a0
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/363715a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038360002
    241 https://doi.org/10.1038/363715a0
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/377495a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004818489
    244 https://doi.org/10.1038/377495a0
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/387s007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083096755
    247 https://doi.org/10.1038/387s007
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/45471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014984168
    250 https://doi.org/10.1038/45471
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/47134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030062261
    253 https://doi.org/10.1038/47134
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/6972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028120489
    256 https://doi.org/10.1038/6972
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/nbt0990-827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038917012
    259 https://doi.org/10.1038/nbt0990-827
    260 rdf:type schema:CreativeWork
    261 grid-institutes:grid.4818.5 schema:alternateName Plant Research International, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
    262 schema:name Plant Research International, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
    263 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...