Partitioning linear trends in age-adjusted rates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-01

AUTHORS

Benjamin F. Hankey, Lynn A. Ries, Carol L. Kosary, Eric J. Feuer, Ray M. Merrill, Limin X. Clegg, Brenda K. Edwards

ABSTRACT

OBJECTIVE: Surveillance of chronic diseases includes monitoring trends in age-adjusted rates in the general population. Statistics that are calculated to describe and compare trends include the annual percent change and the percent change for a specified time period. However, it is also of interest to determine the contribution specific diseases make to an overall trend in order to better understand the impact of interventions and changes in the prevalence of risk factors. The objective here is to provide a method for partitioning a linear trend in age-adjusted rates into disease-specific components. METHODS: The method presented is based on linear regression. The decreasing trend in age-adjusted cancer mortality rates for the total United States during the period 1991-96 is analyzed to illustrate the method. RESULTS: Trends in mortality for cancers of the colon/rectum, breast, lung/bronchus, and prostate are found to be responsible for 75% of the decreasing trend in cancer mortality. CONCLUSIONS: It is possible to partition an overall trend in age-adjusted rates under the assumption that it and the trends for all mutually exclusive and exhaustive subgroups of interest are linear. More... »

PAGES

31-35

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1008953201688

DOI

http://dx.doi.org/10.1023/a:1008953201688

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018773463

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10680727


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epidemiologic Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Newborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mortality", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Cancer Statistics Branch, Cancer Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, EPN, Room 343, 6130 Executive Boulevard, 20892-7352, Bethesda, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hankey", 
        "givenName": "Benjamin F.", 
        "id": "sg:person.0734763244.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734763244.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Cancer Statistics Branch, Cancer Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, EPN, Room 343, 6130 Executive Boulevard, 20892-7352, Bethesda, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ries", 
        "givenName": "Lynn A.", 
        "id": "sg:person.01274015223.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274015223.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Cancer Statistics Branch, Cancer Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, EPN, Room 343, 6130 Executive Boulevard, 20892-7352, Bethesda, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kosary", 
        "givenName": "Carol L.", 
        "id": "sg:person.01020021641.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020021641.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Applied Research Branch, Cancer Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, EPN, Room 313, 6130 Executive Boulevard, 20892-7352, Bethesda, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feuer", 
        "givenName": "Eric J.", 
        "id": "sg:person.0736643174.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736643174.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham Young University", 
          "id": "https://www.grid.ac/institutes/grid.253294.b", 
          "name": [
            "Health Sciences Department, Brigham Young University, 84602-0002, Provo, Utah, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merrill", 
        "givenName": "Ray M.", 
        "id": "sg:person.01074727520.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074727520.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Cancer Statistics Branch, Cancer Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, EPN, Room 343, 6130 Executive Boulevard, 20892-7352, Bethesda, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clegg", 
        "givenName": "Limin X.", 
        "id": "sg:person.07520474667.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07520474667.66"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Edwards", 
        "givenName": "Brenda K.", 
        "id": "sg:person.0723760625.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723760625.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19961115)78:10<2045::aid-cncr3>3.0.co;2-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015935385"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-01", 
    "datePublishedReg": "2000-01-01", 
    "description": "OBJECTIVE: Surveillance of chronic diseases includes monitoring trends in age-adjusted rates in the general population. Statistics that are calculated to describe and compare trends include the annual percent change and the percent change for a specified time period. However, it is also of interest to determine the contribution specific diseases make to an overall trend in order to better understand the impact of interventions and changes in the prevalence of risk factors. The objective here is to provide a method for partitioning a linear trend in age-adjusted rates into disease-specific components.\nMETHODS: The method presented is based on linear regression. The decreasing trend in age-adjusted cancer mortality rates for the total United States during the period 1991-96 is analyzed to illustrate the method.\nRESULTS: Trends in mortality for cancers of the colon/rectum, breast, lung/bronchus, and prostate are found to be responsible for 75% of the decreasing trend in cancer mortality.\nCONCLUSIONS: It is possible to partition an overall trend in age-adjusted rates under the assumption that it and the trends for all mutually exclusive and exhaustive subgroups of interest are linear.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1008953201688", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1100917", 
        "issn": [
          "0957-5243", 
          "1573-7225"
        ], 
        "name": "Cancer Causes & Control", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Partitioning linear trends in age-adjusted rates", 
    "pagination": "31-35", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5972f9533fa1ef1c09e530ccdf3c6ae8ee69b33f14ca7a5c98d65a8973a1e372"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10680727"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9100846"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1008953201688"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018773463"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1008953201688", 
      "https://app.dimensions.ai/details/publication/pub.1018773463"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1008953201688"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008953201688'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008953201688'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008953201688'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008953201688'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      47 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1008953201688 schema:about N01355db6dfdb4ea8821761ca4f0d654a
2 N19503a71c9ef4950ba113a485aa6816c
3 N199803b1ba854b41832c4c9ed68da028
4 N220a32b53f21471f906a4affdde78eca
5 N2caf5a0204774f92bc352777c7aaa25c
6 N2db908892c4e4086b12bdb8faa669d87
7 N348b789189f54eb3aed998132423d78a
8 N58f4bda588c24902982048359abca81b
9 N6d0991b5733f487187b3da898b1d4f89
10 N701e1147111848f1b26efc23ec8b14b4
11 N794d497229114750995244fc9d4b9ede
12 Na16752fe62544f329dba6ea06acd292f
13 Naa1cdf9c75ed439a9239b04454997440
14 Naafe34bbe98d4cc4b9437457343a4d3c
15 Nae6b2c7468e44f5e87bcefccd44c1d1e
16 Ne0b4c959ae984145b9a4c137855ad20d
17 Ne6b0a194ec7e48968204267a5731826b
18 anzsrc-for:11
19 anzsrc-for:1117
20 schema:author N8a8c161aa1144cdf873e4d6efa8cc311
21 schema:citation https://doi.org/10.1002/(sici)1097-0142(19961115)78:10<2045::aid-cncr3>3.0.co;2-n
22 schema:datePublished 2000-01
23 schema:datePublishedReg 2000-01-01
24 schema:description OBJECTIVE: Surveillance of chronic diseases includes monitoring trends in age-adjusted rates in the general population. Statistics that are calculated to describe and compare trends include the annual percent change and the percent change for a specified time period. However, it is also of interest to determine the contribution specific diseases make to an overall trend in order to better understand the impact of interventions and changes in the prevalence of risk factors. The objective here is to provide a method for partitioning a linear trend in age-adjusted rates into disease-specific components. METHODS: The method presented is based on linear regression. The decreasing trend in age-adjusted cancer mortality rates for the total United States during the period 1991-96 is analyzed to illustrate the method. RESULTS: Trends in mortality for cancers of the colon/rectum, breast, lung/bronchus, and prostate are found to be responsible for 75% of the decreasing trend in cancer mortality. CONCLUSIONS: It is possible to partition an overall trend in age-adjusted rates under the assumption that it and the trends for all mutually exclusive and exhaustive subgroups of interest are linear.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N32a32015f82449b285111f38e282f454
29 N463ff528c25f436aad3a7474b49f641f
30 sg:journal.1100917
31 schema:name Partitioning linear trends in age-adjusted rates
32 schema:pagination 31-35
33 schema:productId N0ef85b7f40c84eca9289954831fee2cd
34 N1fe1633baf8c4fd49d980c0df5d0007c
35 N2c1cb3752454477781b0bc187f829e45
36 N3e527f73c0404dc380a560cedb152698
37 Nf5048adb9bb14732b19b0e124d1f8f36
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018773463
39 https://doi.org/10.1023/a:1008953201688
40 schema:sdDatePublished 2019-04-10T18:17
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N9a14c45b58b84f73a63f68857f7683eb
43 schema:url http://link.springer.com/10.1023/A:1008953201688
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N01355db6dfdb4ea8821761ca4f0d654a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
48 schema:name Child, Preschool
49 rdf:type schema:DefinedTerm
50 N0ef85b7f40c84eca9289954831fee2cd schema:name nlm_unique_id
51 schema:value 9100846
52 rdf:type schema:PropertyValue
53 N19503a71c9ef4950ba113a485aa6816c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name United States
55 rdf:type schema:DefinedTerm
56 N199803b1ba854b41832c4c9ed68da028 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Aged
58 rdf:type schema:DefinedTerm
59 N19e1f93c65b240ac9d4e0bc45537a71c rdf:first sg:person.07520474667.66
60 rdf:rest N47984dc71f444d48b4742d4e79b7af18
61 N1fe1633baf8c4fd49d980c0df5d0007c schema:name dimensions_id
62 schema:value pub.1018773463
63 rdf:type schema:PropertyValue
64 N220a32b53f21471f906a4affdde78eca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Female
66 rdf:type schema:DefinedTerm
67 N2c1cb3752454477781b0bc187f829e45 schema:name pubmed_id
68 schema:value 10680727
69 rdf:type schema:PropertyValue
70 N2caf5a0204774f92bc352777c7aaa25c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Linear Models
72 rdf:type schema:DefinedTerm
73 N2db908892c4e4086b12bdb8faa669d87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Middle Aged
75 rdf:type schema:DefinedTerm
76 N32a32015f82449b285111f38e282f454 schema:volumeNumber 11
77 rdf:type schema:PublicationVolume
78 N348b789189f54eb3aed998132423d78a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Infant
80 rdf:type schema:DefinedTerm
81 N3e527f73c0404dc380a560cedb152698 schema:name doi
82 schema:value 10.1023/a:1008953201688
83 rdf:type schema:PropertyValue
84 N463ff528c25f436aad3a7474b49f641f schema:issueNumber 1
85 rdf:type schema:PublicationIssue
86 N47984dc71f444d48b4742d4e79b7af18 rdf:first sg:person.0723760625.99
87 rdf:rest rdf:nil
88 N5220a2d232a14f3f9b6814cc2a1946a9 rdf:first sg:person.0736643174.39
89 rdf:rest Naad4f13ee1834c0da83d8216cb8b3aeb
90 N58f4bda588c24902982048359abca81b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Male
92 rdf:type schema:DefinedTerm
93 N6d0991b5733f487187b3da898b1d4f89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Age Factors
95 rdf:type schema:DefinedTerm
96 N701e1147111848f1b26efc23ec8b14b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Mortality
98 rdf:type schema:DefinedTerm
99 N71368a98c7114b0dbd2b9c46e2c43c2b rdf:first sg:person.01020021641.50
100 rdf:rest N5220a2d232a14f3f9b6814cc2a1946a9
101 N794d497229114750995244fc9d4b9ede schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Child
103 rdf:type schema:DefinedTerm
104 N8a8c161aa1144cdf873e4d6efa8cc311 rdf:first sg:person.0734763244.08
105 rdf:rest N9ed82f76f05d4e7dbe4e3469351498bd
106 N9a14c45b58b84f73a63f68857f7683eb schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N9ed82f76f05d4e7dbe4e3469351498bd rdf:first sg:person.01274015223.23
109 rdf:rest N71368a98c7114b0dbd2b9c46e2c43c2b
110 Na16752fe62544f329dba6ea06acd292f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Adolescent
112 rdf:type schema:DefinedTerm
113 Naa1cdf9c75ed439a9239b04454997440 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Infant, Newborn
115 rdf:type schema:DefinedTerm
116 Naad4f13ee1834c0da83d8216cb8b3aeb rdf:first sg:person.01074727520.06
117 rdf:rest N19e1f93c65b240ac9d4e0bc45537a71c
118 Naafe34bbe98d4cc4b9437457343a4d3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Adult
120 rdf:type schema:DefinedTerm
121 Nae6b2c7468e44f5e87bcefccd44c1d1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Neoplasms
123 rdf:type schema:DefinedTerm
124 Ne0b4c959ae984145b9a4c137855ad20d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Humans
126 rdf:type schema:DefinedTerm
127 Ne6b0a194ec7e48968204267a5731826b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Epidemiologic Studies
129 rdf:type schema:DefinedTerm
130 Nf5048adb9bb14732b19b0e124d1f8f36 schema:name readcube_id
131 schema:value 5972f9533fa1ef1c09e530ccdf3c6ae8ee69b33f14ca7a5c98d65a8973a1e372
132 rdf:type schema:PropertyValue
133 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
134 schema:name Medical and Health Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
137 schema:name Public Health and Health Services
138 rdf:type schema:DefinedTerm
139 sg:journal.1100917 schema:issn 0957-5243
140 1573-7225
141 schema:name Cancer Causes & Control
142 rdf:type schema:Periodical
143 sg:person.01020021641.50 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
144 schema:familyName Kosary
145 schema:givenName Carol L.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020021641.50
147 rdf:type schema:Person
148 sg:person.01074727520.06 schema:affiliation https://www.grid.ac/institutes/grid.253294.b
149 schema:familyName Merrill
150 schema:givenName Ray M.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074727520.06
152 rdf:type schema:Person
153 sg:person.01274015223.23 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
154 schema:familyName Ries
155 schema:givenName Lynn A.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274015223.23
157 rdf:type schema:Person
158 sg:person.0723760625.99 schema:familyName Edwards
159 schema:givenName Brenda K.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723760625.99
161 rdf:type schema:Person
162 sg:person.0734763244.08 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
163 schema:familyName Hankey
164 schema:givenName Benjamin F.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734763244.08
166 rdf:type schema:Person
167 sg:person.0736643174.39 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
168 schema:familyName Feuer
169 schema:givenName Eric J.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736643174.39
171 rdf:type schema:Person
172 sg:person.07520474667.66 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
173 schema:familyName Clegg
174 schema:givenName Limin X.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07520474667.66
176 rdf:type schema:Person
177 https://doi.org/10.1002/(sici)1097-0142(19961115)78:10<2045::aid-cncr3>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1015935385
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.253294.b schema:alternateName Brigham Young University
180 schema:name Health Sciences Department, Brigham Young University, 84602-0002, Provo, Utah, USA
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.48336.3a schema:alternateName National Cancer Institute
183 schema:name Applied Research Branch, Cancer Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, EPN, Room 313, 6130 Executive Boulevard, 20892-7352, Bethesda, Maryland, USA
184 Cancer Statistics Branch, Cancer Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, EPN, Room 343, 6130 Executive Boulevard, 20892-7352, Bethesda, Maryland, USA
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...