Brain Size and Number of Neurons: An Exercise in Synthetic Neuroanatomy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-01

AUTHORS

Valentino Braitenberg

ABSTRACT

Certain remarkable invariances have long been known in comparative neuroanatomy, such as the proportionality between neuronal density and the inverse of the cubic root of brain volume or that between the square root of brain weight and the cubic root of body weight. Very likely these quantitative relations reflect some general principles of the architecture of neuronal networks. Under the assumption that most of brain volume is due to fibers, we propose four abstract models: I, constant fiber length per neuron; II, fiber length proportionate to brain diameter; III, complete set of connections between all neurons; IV, complete set of connections between compartments each containing the square root of the total number of neurons. Model I conforms well to the cerebellar cortex. Model II yields the observed comparative invariances between number of neurons and brain size. Model III is totally unrealistic, while Model IV is compatible with the volume of the hemispheric white substance in different mammalian species. More... »

PAGES

71-77

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1008920127052

DOI

http://dx.doi.org/10.1023/a:1008920127052

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017027965

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11316341


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Count", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Size", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organ Size", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "T\u00fcbingen; Laboratorio di Scienze Cognitive dell', Universit\u00e0 degli Studi di Trento, via Tartarotti 7, Rovereto", 
          "id": "http://www.grid.ac/institutes/grid.11696.39", 
          "name": [
            "Max-Planck Institute for Biological Cybernetics, Spemannstr. 38", 
            "Institute of Medical Psychology of the University, Gartenstr. 29", 
            "T\u00fcbingen; Laboratorio di Scienze Cognitive dell', Universit\u00e0 degli Studi di Trento, via Tartarotti 7, Rovereto"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braitenberg", 
        "givenName": "Valentino", 
        "id": "sg:person.012515726701.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515726701.58"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-01", 
    "datePublishedReg": "2001-01-01", 
    "description": "Certain remarkable invariances have long been known in comparative neuroanatomy, such as the proportionality between neuronal density and the inverse of the cubic root of brain volume or that between the square root of brain weight and the cubic root of body weight. Very likely these quantitative relations reflect some general principles of the architecture of neuronal networks. Under the assumption that most of brain volume is due to fibers, we propose four abstract models: I, constant fiber length per neuron; II, fiber length proportionate to brain diameter; III, complete set of connections between all neurons; IV, complete set of connections between compartments each containing the square root of the total number of neurons. Model I conforms well to the cerebellar cortex. Model II yields the observed comparative invariances between number of neurons and brain size. Model III is totally unrealistic, while Model IV is compatible with the volume of the hemispheric white substance in different mammalian species.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1008920127052", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1112739", 
        "issn": [
          "0929-5313", 
          "1573-6873"
        ], 
        "name": "Journal of Computational Neuroscience", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "brain volume", 
      "number of neurons", 
      "neuronal density", 
      "brain weight", 
      "body weight", 
      "cerebellar cortex", 
      "brain size", 
      "neurons", 
      "neuronal networks", 
      "white substance", 
      "different mammalian species", 
      "neuroanatomy", 
      "total number", 
      "mammalian species", 
      "comparative neuroanatomy", 
      "cortex", 
      "weight", 
      "exercise", 
      "volume", 
      "compartments", 
      "number", 
      "substances", 
      "length", 
      "general principles", 
      "fibers", 
      "size", 
      "diameter", 
      "constant fiber length", 
      "Model III", 
      "roots", 
      "fiber length", 
      "connection", 
      "relation", 
      "model", 
      "model I", 
      "quantitative relation", 
      "species", 
      "density", 
      "model IV", 
      "proportionality", 
      "principles", 
      "set", 
      "remarkable invariance", 
      "complete set", 
      "square root", 
      "network", 
      "inverse", 
      "assumption", 
      "yield", 
      "invariance", 
      "architecture", 
      "cubic root", 
      "abstract model"
    ], 
    "name": "Brain Size and Number of Neurons: An Exercise in Synthetic Neuroanatomy", 
    "pagination": "71-77", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017027965"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1008920127052"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11316341"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1008920127052", 
      "https://app.dimensions.ai/details/publication/pub.1017027965"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_310.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1008920127052"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008920127052'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008920127052'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008920127052'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008920127052'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      20 PREDICATES      87 URIs      79 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1008920127052 schema:about N0d952435fb4843d5ba56354eec7260f0
2 N2e38ed7e4d93470ba2314ea4cbe749c8
3 N38a9a6e5086f4c86bdf733f420f7bf81
4 N653ec67b5afe4cc9996baa5419f24929
5 N8c5244b55cc14dbe8b924097f775d647
6 Na1033af6022d4a31ad9746bfc839ca4a
7 Nc41a066808154802a34e66417bdcf62b
8 Ne4e440b0b7834c75b8955bbd5d92093e
9 anzsrc-for:11
10 anzsrc-for:1109
11 schema:author N3c23bcff310f441a806dc7c22696c504
12 schema:datePublished 2001-01
13 schema:datePublishedReg 2001-01-01
14 schema:description Certain remarkable invariances have long been known in comparative neuroanatomy, such as the proportionality between neuronal density and the inverse of the cubic root of brain volume or that between the square root of brain weight and the cubic root of body weight. Very likely these quantitative relations reflect some general principles of the architecture of neuronal networks. Under the assumption that most of brain volume is due to fibers, we propose four abstract models: I, constant fiber length per neuron; II, fiber length proportionate to brain diameter; III, complete set of connections between all neurons; IV, complete set of connections between compartments each containing the square root of the total number of neurons. Model I conforms well to the cerebellar cortex. Model II yields the observed comparative invariances between number of neurons and brain size. Model III is totally unrealistic, while Model IV is compatible with the volume of the hemispheric white substance in different mammalian species.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N167ff33e83fc46a9a674c9021e217907
18 N2d25936db00c4f5bafaf37827645a0e2
19 sg:journal.1112739
20 schema:keywords Model III
21 abstract model
22 architecture
23 assumption
24 body weight
25 brain size
26 brain volume
27 brain weight
28 cerebellar cortex
29 comparative neuroanatomy
30 compartments
31 complete set
32 connection
33 constant fiber length
34 cortex
35 cubic root
36 density
37 diameter
38 different mammalian species
39 exercise
40 fiber length
41 fibers
42 general principles
43 invariance
44 inverse
45 length
46 mammalian species
47 model
48 model I
49 model IV
50 network
51 neuroanatomy
52 neuronal density
53 neuronal networks
54 neurons
55 number
56 number of neurons
57 principles
58 proportionality
59 quantitative relation
60 relation
61 remarkable invariance
62 roots
63 set
64 size
65 species
66 square root
67 substances
68 total number
69 volume
70 weight
71 white substance
72 yield
73 schema:name Brain Size and Number of Neurons: An Exercise in Synthetic Neuroanatomy
74 schema:pagination 71-77
75 schema:productId Nb1eb55fe32cd4b0b8f46b2ec3ea273aa
76 Ne54482c7702549e6a956b4b061e33c7e
77 Nea9082143126479586ab4eaac508d337
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017027965
79 https://doi.org/10.1023/a:1008920127052
80 schema:sdDatePublished 2022-08-04T16:53
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N58729d28d042429fb3ee314e0406bdc8
83 schema:url https://doi.org/10.1023/a:1008920127052
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N0d952435fb4843d5ba56354eec7260f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Neurons
89 rdf:type schema:DefinedTerm
90 N167ff33e83fc46a9a674c9021e217907 schema:volumeNumber 10
91 rdf:type schema:PublicationVolume
92 N2d25936db00c4f5bafaf37827645a0e2 schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 N2e38ed7e4d93470ba2314ea4cbe749c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Cell Count
96 rdf:type schema:DefinedTerm
97 N38a9a6e5086f4c86bdf733f420f7bf81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Organ Size
99 rdf:type schema:DefinedTerm
100 N3c23bcff310f441a806dc7c22696c504 rdf:first sg:person.012515726701.58
101 rdf:rest rdf:nil
102 N58729d28d042429fb3ee314e0406bdc8 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N653ec67b5afe4cc9996baa5419f24929 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Cell Size
106 rdf:type schema:DefinedTerm
107 N8c5244b55cc14dbe8b924097f775d647 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Biometry
109 rdf:type schema:DefinedTerm
110 Na1033af6022d4a31ad9746bfc839ca4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Models, Neurological
112 rdf:type schema:DefinedTerm
113 Nb1eb55fe32cd4b0b8f46b2ec3ea273aa schema:name dimensions_id
114 schema:value pub.1017027965
115 rdf:type schema:PropertyValue
116 Nc41a066808154802a34e66417bdcf62b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Brain
118 rdf:type schema:DefinedTerm
119 Ne4e440b0b7834c75b8955bbd5d92093e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Animals
121 rdf:type schema:DefinedTerm
122 Ne54482c7702549e6a956b4b061e33c7e schema:name doi
123 schema:value 10.1023/a:1008920127052
124 rdf:type schema:PropertyValue
125 Nea9082143126479586ab4eaac508d337 schema:name pubmed_id
126 schema:value 11316341
127 rdf:type schema:PropertyValue
128 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
129 schema:name Medical and Health Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
132 schema:name Neurosciences
133 rdf:type schema:DefinedTerm
134 sg:journal.1112739 schema:issn 0929-5313
135 1573-6873
136 schema:name Journal of Computational Neuroscience
137 schema:publisher Springer Nature
138 rdf:type schema:Periodical
139 sg:person.012515726701.58 schema:affiliation grid-institutes:grid.11696.39
140 schema:familyName Braitenberg
141 schema:givenName Valentino
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515726701.58
143 rdf:type schema:Person
144 grid-institutes:grid.11696.39 schema:alternateName Tübingen; Laboratorio di Scienze Cognitive dell', Università degli Studi di Trento, via Tartarotti 7, Rovereto
145 schema:name Institute of Medical Psychology of the University, Gartenstr. 29
146 Max-Planck Institute for Biological Cybernetics, Spemannstr. 38
147 Tübingen; Laboratorio di Scienze Cognitive dell', Università degli Studi di Trento, via Tartarotti 7, Rovereto
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...