Ontology type: schema:ScholarlyArticle
2001-01
AUTHORS ABSTRACTCertain remarkable invariances have long been known in comparative neuroanatomy, such as the proportionality between neuronal density and the inverse of the cubic root of brain volume or that between the square root of brain weight and the cubic root of body weight. Very likely these quantitative relations reflect some general principles of the architecture of neuronal networks. Under the assumption that most of brain volume is due to fibers, we propose four abstract models: I, constant fiber length per neuron; II, fiber length proportionate to brain diameter; III, complete set of connections between all neurons; IV, complete set of connections between compartments each containing the square root of the total number of neurons. Model I conforms well to the cerebellar cortex. Model II yields the observed comparative invariances between number of neurons and brain size. Model III is totally unrealistic, while Model IV is compatible with the volume of the hemispheric white substance in different mammalian species. More... »
PAGES71-77
http://scigraph.springernature.com/pub.10.1023/a:1008920127052
DOIhttp://dx.doi.org/10.1023/a:1008920127052
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1017027965
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/11316341
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Neurosciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Biometry",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Brain",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Count",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Size",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Neurological",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neurons",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Organ Size",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "T\u00fcbingen; Laboratorio di Scienze Cognitive dell', Universit\u00e0 degli Studi di Trento, via Tartarotti 7, Rovereto",
"id": "http://www.grid.ac/institutes/grid.11696.39",
"name": [
"Max-Planck Institute for Biological Cybernetics, Spemannstr. 38",
"Institute of Medical Psychology of the University, Gartenstr. 29",
"T\u00fcbingen; Laboratorio di Scienze Cognitive dell', Universit\u00e0 degli Studi di Trento, via Tartarotti 7, Rovereto"
],
"type": "Organization"
},
"familyName": "Braitenberg",
"givenName": "Valentino",
"id": "sg:person.012515726701.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515726701.58"
],
"type": "Person"
}
],
"datePublished": "2001-01",
"datePublishedReg": "2001-01-01",
"description": "Certain remarkable invariances have long been known in comparative neuroanatomy, such as the proportionality between neuronal density and the inverse of the cubic root of brain volume or that between the square root of brain weight and the cubic root of body weight. Very likely these quantitative relations reflect some general principles of the architecture of neuronal networks. Under the assumption that most of brain volume is due to fibers, we propose four abstract models: I, constant fiber length per neuron; II, fiber length proportionate to brain diameter; III, complete set of connections between all neurons; IV, complete set of connections between compartments each containing the square root of the total number of neurons. Model I conforms well to the cerebellar cortex. Model II yields the observed comparative invariances between number of neurons and brain size. Model III is totally unrealistic, while Model IV is compatible with the volume of the hemispheric white substance in different mammalian species.",
"genre": "article",
"id": "sg:pub.10.1023/a:1008920127052",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1112739",
"issn": [
"0929-5313",
"1573-6873"
],
"name": "Journal of Computational Neuroscience",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "10"
}
],
"keywords": [
"brain volume",
"number of neurons",
"neuronal density",
"brain weight",
"body weight",
"cerebellar cortex",
"brain size",
"neurons",
"neuronal networks",
"white substance",
"different mammalian species",
"neuroanatomy",
"total number",
"mammalian species",
"comparative neuroanatomy",
"cortex",
"weight",
"exercise",
"volume",
"compartments",
"number",
"substances",
"length",
"general principles",
"fibers",
"size",
"diameter",
"constant fiber length",
"Model III",
"roots",
"fiber length",
"connection",
"relation",
"model",
"model I",
"quantitative relation",
"species",
"density",
"model IV",
"proportionality",
"principles",
"set",
"remarkable invariance",
"complete set",
"square root",
"network",
"inverse",
"assumption",
"yield",
"invariance",
"architecture",
"cubic root",
"abstract model"
],
"name": "Brain Size and Number of Neurons: An Exercise in Synthetic Neuroanatomy",
"pagination": "71-77",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1017027965"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1008920127052"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"11316341"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1008920127052",
"https://app.dimensions.ai/details/publication/pub.1017027965"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:53",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_310.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1023/a:1008920127052"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008920127052'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008920127052'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008920127052'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008920127052'
This table displays all metadata directly associated to this object as RDF triples.
148 TRIPLES
20 PREDICATES
87 URIs
79 LITERALS
15 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1023/a:1008920127052 | schema:about | N0d952435fb4843d5ba56354eec7260f0 |
2 | ″ | ″ | N2e38ed7e4d93470ba2314ea4cbe749c8 |
3 | ″ | ″ | N38a9a6e5086f4c86bdf733f420f7bf81 |
4 | ″ | ″ | N653ec67b5afe4cc9996baa5419f24929 |
5 | ″ | ″ | N8c5244b55cc14dbe8b924097f775d647 |
6 | ″ | ″ | Na1033af6022d4a31ad9746bfc839ca4a |
7 | ″ | ″ | Nc41a066808154802a34e66417bdcf62b |
8 | ″ | ″ | Ne4e440b0b7834c75b8955bbd5d92093e |
9 | ″ | ″ | anzsrc-for:11 |
10 | ″ | ″ | anzsrc-for:1109 |
11 | ″ | schema:author | N3c23bcff310f441a806dc7c22696c504 |
12 | ″ | schema:datePublished | 2001-01 |
13 | ″ | schema:datePublishedReg | 2001-01-01 |
14 | ″ | schema:description | Certain remarkable invariances have long been known in comparative neuroanatomy, such as the proportionality between neuronal density and the inverse of the cubic root of brain volume or that between the square root of brain weight and the cubic root of body weight. Very likely these quantitative relations reflect some general principles of the architecture of neuronal networks. Under the assumption that most of brain volume is due to fibers, we propose four abstract models: I, constant fiber length per neuron; II, fiber length proportionate to brain diameter; III, complete set of connections between all neurons; IV, complete set of connections between compartments each containing the square root of the total number of neurons. Model I conforms well to the cerebellar cortex. Model II yields the observed comparative invariances between number of neurons and brain size. Model III is totally unrealistic, while Model IV is compatible with the volume of the hemispheric white substance in different mammalian species. |
15 | ″ | schema:genre | article |
16 | ″ | schema:isAccessibleForFree | false |
17 | ″ | schema:isPartOf | N167ff33e83fc46a9a674c9021e217907 |
18 | ″ | ″ | N2d25936db00c4f5bafaf37827645a0e2 |
19 | ″ | ″ | sg:journal.1112739 |
20 | ″ | schema:keywords | Model III |
21 | ″ | ″ | abstract model |
22 | ″ | ″ | architecture |
23 | ″ | ″ | assumption |
24 | ″ | ″ | body weight |
25 | ″ | ″ | brain size |
26 | ″ | ″ | brain volume |
27 | ″ | ″ | brain weight |
28 | ″ | ″ | cerebellar cortex |
29 | ″ | ″ | comparative neuroanatomy |
30 | ″ | ″ | compartments |
31 | ″ | ″ | complete set |
32 | ″ | ″ | connection |
33 | ″ | ″ | constant fiber length |
34 | ″ | ″ | cortex |
35 | ″ | ″ | cubic root |
36 | ″ | ″ | density |
37 | ″ | ″ | diameter |
38 | ″ | ″ | different mammalian species |
39 | ″ | ″ | exercise |
40 | ″ | ″ | fiber length |
41 | ″ | ″ | fibers |
42 | ″ | ″ | general principles |
43 | ″ | ″ | invariance |
44 | ″ | ″ | inverse |
45 | ″ | ″ | length |
46 | ″ | ″ | mammalian species |
47 | ″ | ″ | model |
48 | ″ | ″ | model I |
49 | ″ | ″ | model IV |
50 | ″ | ″ | network |
51 | ″ | ″ | neuroanatomy |
52 | ″ | ″ | neuronal density |
53 | ″ | ″ | neuronal networks |
54 | ″ | ″ | neurons |
55 | ″ | ″ | number |
56 | ″ | ″ | number of neurons |
57 | ″ | ″ | principles |
58 | ″ | ″ | proportionality |
59 | ″ | ″ | quantitative relation |
60 | ″ | ″ | relation |
61 | ″ | ″ | remarkable invariance |
62 | ″ | ″ | roots |
63 | ″ | ″ | set |
64 | ″ | ″ | size |
65 | ″ | ″ | species |
66 | ″ | ″ | square root |
67 | ″ | ″ | substances |
68 | ″ | ″ | total number |
69 | ″ | ″ | volume |
70 | ″ | ″ | weight |
71 | ″ | ″ | white substance |
72 | ″ | ″ | yield |
73 | ″ | schema:name | Brain Size and Number of Neurons: An Exercise in Synthetic Neuroanatomy |
74 | ″ | schema:pagination | 71-77 |
75 | ″ | schema:productId | Nb1eb55fe32cd4b0b8f46b2ec3ea273aa |
76 | ″ | ″ | Ne54482c7702549e6a956b4b061e33c7e |
77 | ″ | ″ | Nea9082143126479586ab4eaac508d337 |
78 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017027965 |
79 | ″ | ″ | https://doi.org/10.1023/a:1008920127052 |
80 | ″ | schema:sdDatePublished | 2022-08-04T16:53 |
81 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
82 | ″ | schema:sdPublisher | N58729d28d042429fb3ee314e0406bdc8 |
83 | ″ | schema:url | https://doi.org/10.1023/a:1008920127052 |
84 | ″ | sgo:license | sg:explorer/license/ |
85 | ″ | sgo:sdDataset | articles |
86 | ″ | rdf:type | schema:ScholarlyArticle |
87 | N0d952435fb4843d5ba56354eec7260f0 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
88 | ″ | schema:name | Neurons |
89 | ″ | rdf:type | schema:DefinedTerm |
90 | N167ff33e83fc46a9a674c9021e217907 | schema:volumeNumber | 10 |
91 | ″ | rdf:type | schema:PublicationVolume |
92 | N2d25936db00c4f5bafaf37827645a0e2 | schema:issueNumber | 1 |
93 | ″ | rdf:type | schema:PublicationIssue |
94 | N2e38ed7e4d93470ba2314ea4cbe749c8 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
95 | ″ | schema:name | Cell Count |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | N38a9a6e5086f4c86bdf733f420f7bf81 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
98 | ″ | schema:name | Organ Size |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | N3c23bcff310f441a806dc7c22696c504 | rdf:first | sg:person.012515726701.58 |
101 | ″ | rdf:rest | rdf:nil |
102 | N58729d28d042429fb3ee314e0406bdc8 | schema:name | Springer Nature - SN SciGraph project |
103 | ″ | rdf:type | schema:Organization |
104 | N653ec67b5afe4cc9996baa5419f24929 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
105 | ″ | schema:name | Cell Size |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | N8c5244b55cc14dbe8b924097f775d647 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
108 | ″ | schema:name | Biometry |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | Na1033af6022d4a31ad9746bfc839ca4a | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
111 | ″ | schema:name | Models, Neurological |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | Nb1eb55fe32cd4b0b8f46b2ec3ea273aa | schema:name | dimensions_id |
114 | ″ | schema:value | pub.1017027965 |
115 | ″ | rdf:type | schema:PropertyValue |
116 | Nc41a066808154802a34e66417bdcf62b | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
117 | ″ | schema:name | Brain |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | Ne4e440b0b7834c75b8955bbd5d92093e | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
120 | ″ | schema:name | Animals |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | Ne54482c7702549e6a956b4b061e33c7e | schema:name | doi |
123 | ″ | schema:value | 10.1023/a:1008920127052 |
124 | ″ | rdf:type | schema:PropertyValue |
125 | Nea9082143126479586ab4eaac508d337 | schema:name | pubmed_id |
126 | ″ | schema:value | 11316341 |
127 | ″ | rdf:type | schema:PropertyValue |
128 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
129 | ″ | schema:name | Medical and Health Sciences |
130 | ″ | rdf:type | schema:DefinedTerm |
131 | anzsrc-for:1109 | schema:inDefinedTermSet | anzsrc-for: |
132 | ″ | schema:name | Neurosciences |
133 | ″ | rdf:type | schema:DefinedTerm |
134 | sg:journal.1112739 | schema:issn | 0929-5313 |
135 | ″ | ″ | 1573-6873 |
136 | ″ | schema:name | Journal of Computational Neuroscience |
137 | ″ | schema:publisher | Springer Nature |
138 | ″ | rdf:type | schema:Periodical |
139 | sg:person.012515726701.58 | schema:affiliation | grid-institutes:grid.11696.39 |
140 | ″ | schema:familyName | Braitenberg |
141 | ″ | schema:givenName | Valentino |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515726701.58 |
143 | ″ | rdf:type | schema:Person |
144 | grid-institutes:grid.11696.39 | schema:alternateName | Tübingen; Laboratorio di Scienze Cognitive dell', Università degli Studi di Trento, via Tartarotti 7, Rovereto |
145 | ″ | schema:name | Institute of Medical Psychology of the University, Gartenstr. 29 |
146 | ″ | ″ | Max-Planck Institute for Biological Cybernetics, Spemannstr. 38 |
147 | ″ | ″ | Tübingen; Laboratorio di Scienze Cognitive dell', Università degli Studi di Trento, via Tartarotti 7, Rovereto |
148 | ″ | rdf:type | schema:Organization |