Extracting Grain Boundary and Surface Energy from Measurement of Triple Junction Geometry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-11

AUTHORS

B.L. Adams, S. Ta'Asan, D. Kinderlehrer, I. Livshits, D.E. Mason, Chun-Te Wu, W.W. Mullins, G.S. Rohrer, A.D. Rollett, D.M. Saylor

ABSTRACT

Measurement of the geometry of triple junctions between grain boundaries in polycrystalline materials generates large sets of dihedral angles from which maps of the grain boundary energy may be extracted. A preliminary analysis has been performed for a sample of magnesia based on a three-parameter description of grain boundaries. An extended form of orientation imaging microscopy (OIM) was used to measure both triple junction geometry via image analysis in the SEM and local grain orientation via electron back scatter diffraction. Serial sectioning with registry of both in-plane images and successive sections characterizes triple junction tangents from which true dihedral angles are calculated. We apply Herring's relation at each triple junction, based on the assumption of local equilibrium at the junction. By limiting grain boundary character to a (three parameter) specification of misorientation for the preliminary analysis, we can neglect the torque terms and apply the sine law to the three boundaries. This provides two independent relations per triple junction between grain boundary energies and dihedral angles. Discretizing the misorientation and employing multiscale statistical analysis on large data sets allows (relative) grain boundary energy as a function of boundary character to be extracted from triple junction geometry. A similar analysis of thermal grooves allows the anisotropy of the surface energy to be measured in MgO. More... »

PAGES

321-337

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1008733728830

DOI

http://dx.doi.org/10.1023/a:1008733728830

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037355584


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Grigham Young University, Provo, UT, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mechanical Engineering, Grigham Young University, Provo, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adams", 
        "givenName": "B.L.", 
        "id": "sg:person.01006310242.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006310242.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Department of Mathematical Sciences, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ta'Asan", 
        "givenName": "S.", 
        "id": "sg:person.01203201566.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203201566.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Department of Mathematical Sciences, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kinderlehrer", 
        "givenName": "D.", 
        "id": "sg:person.0715614501.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715614501.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Department of Mathematical Sciences, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Livshits", 
        "givenName": "I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Mechanics, Michigan State University, 48864, East Lansing, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Materials Science and Mechanics, Michigan State University, 48864, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mason", 
        "givenName": "D.E.", 
        "id": "sg:person.011437662421.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011437662421.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science and Engineering Department, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Materials Science and Engineering Department, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Chun-Te", 
        "id": "sg:person.01022141350.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022141350.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science and Engineering Department, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Materials Science and Engineering Department, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mullins", 
        "givenName": "W.W.", 
        "id": "sg:person.013517176323.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517176323.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science and Engineering Department, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Materials Science and Engineering Department, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rohrer", 
        "givenName": "G.S.", 
        "id": "sg:person.0674355560.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674355560.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science and Engineering Department, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Materials Science and Engineering Department, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rollett", 
        "givenName": "A.D.", 
        "id": "sg:person.01223255260.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223255260.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science and Engineering Department, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Materials Science and Engineering Department, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saylor", 
        "givenName": "D.M.", 
        "id": "sg:person.01026157761.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026157761.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11837-998-0248-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001040583", 
          "https://doi.org/10.1007/s11837-998-0248-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-11", 
    "datePublishedReg": "1999-11-01", 
    "description": "Measurement of the geometry of triple junctions between grain boundaries in polycrystalline materials generates large sets of dihedral angles from which maps of the grain boundary energy may be extracted. A preliminary analysis has been performed for a sample of magnesia based on a three-parameter description of grain boundaries. An extended form of orientation imaging microscopy (OIM) was used to measure both triple junction geometry via image analysis in the SEM and local grain orientation via electron back scatter diffraction. Serial sectioning with registry of both in-plane images and successive sections characterizes triple junction tangents from which true dihedral angles are calculated. We apply Herring's relation at each triple junction, based on the assumption of local equilibrium at the junction. By limiting grain boundary character to a (three parameter) specification of misorientation for the preliminary analysis, we can neglect the torque terms and apply the sine law to the three boundaries. This provides two independent relations per triple junction between grain boundary energies and dihedral angles. Discretizing the misorientation and employing multiscale statistical analysis on large data sets allows (relative) grain boundary energy as a function of boundary character to be extracted from triple junction geometry. A similar analysis of thermal grooves allows the anisotropy of the surface energy to be measured in MgO.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1008733728830", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1141575", 
        "issn": [
          "0927-7056", 
          "1573-2746"
        ], 
        "name": "Interface Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "grain boundary energy", 
      "grain boundaries", 
      "triple junction geometry", 
      "boundary energy", 
      "boundary character", 
      "surface energy", 
      "electron back scatter diffraction", 
      "junction geometry", 
      "grain boundary character", 
      "triple junction", 
      "true dihedral angles", 
      "local grain orientation", 
      "samples of magnesia", 
      "scatter diffraction", 
      "multiscale statistical analysis", 
      "grain orientation", 
      "three-parameter description", 
      "thermal grooves", 
      "polycrystalline materials", 
      "sine law", 
      "torque term", 
      "local equilibrium", 
      "misorientation", 
      "energy", 
      "geometry", 
      "boundaries", 
      "angle", 
      "magnesia", 
      "preliminary analysis", 
      "image analysis", 
      "SEM", 
      "measurements", 
      "successive sections", 
      "materials", 
      "orientation", 
      "tangent", 
      "junctions", 
      "diffraction", 
      "plane images", 
      "MgO.", 
      "microscopy", 
      "groove", 
      "anisotropy", 
      "analysis", 
      "law", 
      "specification", 
      "extended form", 
      "images", 
      "equilibrium", 
      "sections", 
      "terms", 
      "maps", 
      "description", 
      "set", 
      "assumption", 
      "samples", 
      "data sets", 
      "relation", 
      "large set", 
      "character", 
      "similar analysis", 
      "statistical analysis", 
      "form", 
      "function", 
      "large data sets", 
      "dihedral angle", 
      "independent relation", 
      "registry", 
      "back scatter diffraction", 
      "triple junction tangents", 
      "junction tangents", 
      "Herring's relation", 
      "specification of misorientation"
    ], 
    "name": "Extracting Grain Boundary and Surface Energy from Measurement of Triple Junction Geometry", 
    "pagination": "321-337", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037355584"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1008733728830"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1008733728830", 
      "https://app.dimensions.ai/details/publication/pub.1037355584"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_331.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1008733728830"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008733728830'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008733728830'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008733728830'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008733728830'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      22 PREDICATES      100 URIs      91 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1008733728830 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N94fb272e72c34024890f94a92ffcc4f6
4 schema:citation sg:pub.10.1007/s11837-998-0248-z
5 schema:datePublished 1999-11
6 schema:datePublishedReg 1999-11-01
7 schema:description Measurement of the geometry of triple junctions between grain boundaries in polycrystalline materials generates large sets of dihedral angles from which maps of the grain boundary energy may be extracted. A preliminary analysis has been performed for a sample of magnesia based on a three-parameter description of grain boundaries. An extended form of orientation imaging microscopy (OIM) was used to measure both triple junction geometry via image analysis in the SEM and local grain orientation via electron back scatter diffraction. Serial sectioning with registry of both in-plane images and successive sections characterizes triple junction tangents from which true dihedral angles are calculated. We apply Herring's relation at each triple junction, based on the assumption of local equilibrium at the junction. By limiting grain boundary character to a (three parameter) specification of misorientation for the preliminary analysis, we can neglect the torque terms and apply the sine law to the three boundaries. This provides two independent relations per triple junction between grain boundary energies and dihedral angles. Discretizing the misorientation and employing multiscale statistical analysis on large data sets allows (relative) grain boundary energy as a function of boundary character to be extracted from triple junction geometry. A similar analysis of thermal grooves allows the anisotropy of the surface energy to be measured in MgO.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nbcd3d0a59b1f43998bde9b39a57bbec0
12 Ne44afb3fe4494aa69018fc7f2433856a
13 sg:journal.1141575
14 schema:keywords Herring's relation
15 MgO.
16 SEM
17 analysis
18 angle
19 anisotropy
20 assumption
21 back scatter diffraction
22 boundaries
23 boundary character
24 boundary energy
25 character
26 data sets
27 description
28 diffraction
29 dihedral angle
30 electron back scatter diffraction
31 energy
32 equilibrium
33 extended form
34 form
35 function
36 geometry
37 grain boundaries
38 grain boundary character
39 grain boundary energy
40 grain orientation
41 groove
42 image analysis
43 images
44 independent relation
45 junction geometry
46 junction tangents
47 junctions
48 large data sets
49 large set
50 law
51 local equilibrium
52 local grain orientation
53 magnesia
54 maps
55 materials
56 measurements
57 microscopy
58 misorientation
59 multiscale statistical analysis
60 orientation
61 plane images
62 polycrystalline materials
63 preliminary analysis
64 registry
65 relation
66 samples
67 samples of magnesia
68 scatter diffraction
69 sections
70 set
71 similar analysis
72 sine law
73 specification
74 specification of misorientation
75 statistical analysis
76 successive sections
77 surface energy
78 tangent
79 terms
80 thermal grooves
81 three-parameter description
82 torque term
83 triple junction
84 triple junction geometry
85 triple junction tangents
86 true dihedral angles
87 schema:name Extracting Grain Boundary and Surface Energy from Measurement of Triple Junction Geometry
88 schema:pagination 321-337
89 schema:productId N48ffc17f8f5442f98cc13d4251e13773
90 Nbc4e73ffe0c746be97665171e758ebcd
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037355584
92 https://doi.org/10.1023/a:1008733728830
93 schema:sdDatePublished 2022-01-01T18:11
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N811038b91b224262a354ece6baca2d26
96 schema:url https://doi.org/10.1023/a:1008733728830
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N096e45a8f4eb4192ba70b36d0121fe7e rdf:first sg:person.01026157761.59
101 rdf:rest rdf:nil
102 N0d4e45f47b474572a8cc8a6fc51a8e07 rdf:first sg:person.011437662421.22
103 rdf:rest Nd4b7474aecf8435ebb1cf1ec2e7f152b
104 N3253a381aae1498e89e5dbe7fb6f8fc0 schema:affiliation grid-institutes:grid.147455.6
105 schema:familyName Livshits
106 schema:givenName I.
107 rdf:type schema:Person
108 N48ffc17f8f5442f98cc13d4251e13773 schema:name doi
109 schema:value 10.1023/a:1008733728830
110 rdf:type schema:PropertyValue
111 N51114713acd54c95aefe3087d3fee553 rdf:first N3253a381aae1498e89e5dbe7fb6f8fc0
112 rdf:rest N0d4e45f47b474572a8cc8a6fc51a8e07
113 N65d595d33cb742329ba18d201daa4924 rdf:first sg:person.01223255260.01
114 rdf:rest N096e45a8f4eb4192ba70b36d0121fe7e
115 N6b5169f28b4946ccb675384acb4a45be rdf:first sg:person.0715614501.59
116 rdf:rest N51114713acd54c95aefe3087d3fee553
117 N7478cce93fc4426bbdb1f22fc8420e0a rdf:first sg:person.013517176323.92
118 rdf:rest N9fa989f1d3684b818a229dc9dcd14808
119 N811038b91b224262a354ece6baca2d26 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 N94fb272e72c34024890f94a92ffcc4f6 rdf:first sg:person.01006310242.00
122 rdf:rest Ncaa8143f13624a6183e66ffcf2a7935f
123 N9fa989f1d3684b818a229dc9dcd14808 rdf:first sg:person.0674355560.00
124 rdf:rest N65d595d33cb742329ba18d201daa4924
125 Nbc4e73ffe0c746be97665171e758ebcd schema:name dimensions_id
126 schema:value pub.1037355584
127 rdf:type schema:PropertyValue
128 Nbcd3d0a59b1f43998bde9b39a57bbec0 schema:volumeNumber 7
129 rdf:type schema:PublicationVolume
130 Ncaa8143f13624a6183e66ffcf2a7935f rdf:first sg:person.01203201566.51
131 rdf:rest N6b5169f28b4946ccb675384acb4a45be
132 Nd4b7474aecf8435ebb1cf1ec2e7f152b rdf:first sg:person.01022141350.57
133 rdf:rest N7478cce93fc4426bbdb1f22fc8420e0a
134 Ne44afb3fe4494aa69018fc7f2433856a schema:issueNumber 3-4
135 rdf:type schema:PublicationIssue
136 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
137 schema:name Engineering
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
140 schema:name Materials Engineering
141 rdf:type schema:DefinedTerm
142 sg:journal.1141575 schema:issn 0927-7056
143 1573-2746
144 schema:name Interface Science
145 schema:publisher Springer Nature
146 rdf:type schema:Periodical
147 sg:person.01006310242.00 schema:affiliation grid-institutes:None
148 schema:familyName Adams
149 schema:givenName B.L.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006310242.00
151 rdf:type schema:Person
152 sg:person.01022141350.57 schema:affiliation grid-institutes:grid.147455.6
153 schema:familyName Wu
154 schema:givenName Chun-Te
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022141350.57
156 rdf:type schema:Person
157 sg:person.01026157761.59 schema:affiliation grid-institutes:grid.147455.6
158 schema:familyName Saylor
159 schema:givenName D.M.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026157761.59
161 rdf:type schema:Person
162 sg:person.011437662421.22 schema:affiliation grid-institutes:grid.17088.36
163 schema:familyName Mason
164 schema:givenName D.E.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011437662421.22
166 rdf:type schema:Person
167 sg:person.01203201566.51 schema:affiliation grid-institutes:grid.147455.6
168 schema:familyName Ta'Asan
169 schema:givenName S.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203201566.51
171 rdf:type schema:Person
172 sg:person.01223255260.01 schema:affiliation grid-institutes:grid.147455.6
173 schema:familyName Rollett
174 schema:givenName A.D.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223255260.01
176 rdf:type schema:Person
177 sg:person.013517176323.92 schema:affiliation grid-institutes:grid.147455.6
178 schema:familyName Mullins
179 schema:givenName W.W.
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517176323.92
181 rdf:type schema:Person
182 sg:person.0674355560.00 schema:affiliation grid-institutes:grid.147455.6
183 schema:familyName Rohrer
184 schema:givenName G.S.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674355560.00
186 rdf:type schema:Person
187 sg:person.0715614501.59 schema:affiliation grid-institutes:grid.147455.6
188 schema:familyName Kinderlehrer
189 schema:givenName D.
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715614501.59
191 rdf:type schema:Person
192 sg:pub.10.1007/s11837-998-0248-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001040583
193 https://doi.org/10.1007/s11837-998-0248-z
194 rdf:type schema:CreativeWork
195 grid-institutes:None schema:alternateName Department of Mechanical Engineering, Grigham Young University, Provo, UT, USA
196 schema:name Department of Mechanical Engineering, Grigham Young University, Provo, UT, USA
197 rdf:type schema:Organization
198 grid-institutes:grid.147455.6 schema:alternateName Department of Mathematical Sciences, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA
199 Materials Science and Engineering Department, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA
200 schema:name Department of Mathematical Sciences, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA
201 Materials Science and Engineering Department, Carnegie Mellon University, 15213-3890, Pittsburgh, PA, USA
202 rdf:type schema:Organization
203 grid-institutes:grid.17088.36 schema:alternateName Department of Materials Science and Mechanics, Michigan State University, 48864, East Lansing, MI, USA
204 schema:name Department of Materials Science and Mechanics, Michigan State University, 48864, East Lansing, MI, USA
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...