Prioritizing Information for the Discovery of Phenomena View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-09

AUTHORS

Paul Helman, Rebecca Gore

ABSTRACT

We consider the problem of prioritizing a collection of discrete pieces of information, or transactions. The goal is to rank the transactions in such a way that the user can best pursue a subset of the transactions in hopes of discovering those which were generated by an interesting source. The problem is shown to differ from traditional classification in several fundamental ways. Ranking algorithms are divided into classes, depending on the amount of information they may utilize. We demonstrate that while ranking by the least constrained algorithm class is consistent with classification, such is not the case for a more constrained class of algorithms. We demonstrate also that while optimal ranking by the former class is “easy”, optimal ranking by the latter class is NP-hard. Finally, we present detectors which solve optimally restricted versions of the ranking problem, including symmetric anomaly detection. More... »

PAGES

99-138

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1008628802726

DOI

http://dx.doi.org/10.1023/a:1008628802726

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004598994


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of New Mexico, 87131, Albuquerque, New Mexico", 
          "id": "http://www.grid.ac/institutes/grid.266832.b", 
          "name": [
            "Department of Computer Science, University of New Mexico, 87131, Albuquerque, New Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Helman", 
        "givenName": "Paul", 
        "id": "sg:person.01034346234.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034346234.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Channing Laboratory, Brigham and Women's Hospital, 02115-5804, Boston, Massachusetts", 
          "id": "http://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Channing Laboratory, Brigham and Women's Hospital, 02115-5804, Boston, Massachusetts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gore", 
        "givenName": "Rebecca", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00116827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004239284", 
          "https://doi.org/10.1007/bf00116827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00114802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022056766", 
          "https://doi.org/10.1007/bf00114802"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-09", 
    "datePublishedReg": "1998-09-01", 
    "description": "We consider the problem of prioritizing a collection of discrete pieces of information, or transactions. The goal is to rank the transactions in such a way that the user can best pursue a subset of the transactions in hopes of discovering those which were generated by an interesting source. The problem is shown to differ from traditional classification in several fundamental ways. Ranking algorithms are divided into classes, depending on the amount of information they may utilize. We demonstrate that while ranking by the least constrained algorithm class is consistent with classification, such is not the case for a more constrained class of algorithms. We demonstrate also that while optimal ranking by the former class is \u201ceasy\u201d, optimal ranking by the latter class is NP-hard. Finally, we present detectors which solve optimally restricted versions of the ranking problem, including symmetric anomaly detection.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1008628802726", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327483", 
        "issn": [
          "0925-9902", 
          "1573-7675"
        ], 
        "name": "Journal of Intelligent Information Systems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "optimal ranking", 
      "anomaly detection", 
      "amount of information", 
      "algorithm class", 
      "constrained class", 
      "transactions", 
      "algorithm", 
      "discrete pieces", 
      "information", 
      "classification", 
      "users", 
      "ranking", 
      "NPs", 
      "traditional classification", 
      "fundamental way", 
      "way", 
      "class", 
      "discovery of phenomena", 
      "latter class", 
      "collection", 
      "detection", 
      "version", 
      "goal", 
      "discovery", 
      "former class", 
      "pieces", 
      "subset", 
      "problem", 
      "interesting source", 
      "detector", 
      "amount", 
      "source", 
      "cases", 
      "phenomenon", 
      "hope"
    ], 
    "name": "Prioritizing Information for the Discovery of Phenomena", 
    "pagination": "99-138", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004598994"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1008628802726"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1008628802726", 
      "https://app.dimensions.ai/details/publication/pub.1004598994"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_286.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1008628802726"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008628802726'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008628802726'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008628802726'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008628802726'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      22 PREDICATES      63 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1008628802726 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N99c9e7c6f06e48ac97b161a01a51b20f
4 schema:citation sg:pub.10.1007/bf00114802
5 sg:pub.10.1007/bf00116827
6 schema:datePublished 1998-09
7 schema:datePublishedReg 1998-09-01
8 schema:description We consider the problem of prioritizing a collection of discrete pieces of information, or transactions. The goal is to rank the transactions in such a way that the user can best pursue a subset of the transactions in hopes of discovering those which were generated by an interesting source. The problem is shown to differ from traditional classification in several fundamental ways. Ranking algorithms are divided into classes, depending on the amount of information they may utilize. We demonstrate that while ranking by the least constrained algorithm class is consistent with classification, such is not the case for a more constrained class of algorithms. We demonstrate also that while optimal ranking by the former class is “easy”, optimal ranking by the latter class is NP-hard. Finally, we present detectors which solve optimally restricted versions of the ranking problem, including symmetric anomaly detection.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N576ed01f08af48fd8fa0f869dd3ec0fd
13 N5b50e46b472c42f7a002704675128c87
14 sg:journal.1327483
15 schema:keywords NPs
16 algorithm
17 algorithm class
18 amount
19 amount of information
20 anomaly detection
21 cases
22 class
23 classification
24 collection
25 constrained class
26 detection
27 detector
28 discovery
29 discovery of phenomena
30 discrete pieces
31 former class
32 fundamental way
33 goal
34 hope
35 information
36 interesting source
37 latter class
38 optimal ranking
39 phenomenon
40 pieces
41 problem
42 ranking
43 source
44 subset
45 traditional classification
46 transactions
47 users
48 version
49 way
50 schema:name Prioritizing Information for the Discovery of Phenomena
51 schema:pagination 99-138
52 schema:productId N9caed7e4d2d141c3b30f854745f0c8cd
53 Na99153e6af1245669b7c10e18508968d
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004598994
55 https://doi.org/10.1023/a:1008628802726
56 schema:sdDatePublished 2022-05-20T07:20
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N9ac4c64a8e5b41b688b78002526dd554
59 schema:url https://doi.org/10.1023/a:1008628802726
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N576ed01f08af48fd8fa0f869dd3ec0fd schema:volumeNumber 11
64 rdf:type schema:PublicationVolume
65 N5b50e46b472c42f7a002704675128c87 schema:issueNumber 2
66 rdf:type schema:PublicationIssue
67 N7abf7f820fd541da8fceebb2722ce56d schema:affiliation grid-institutes:grid.62560.37
68 schema:familyName Gore
69 schema:givenName Rebecca
70 rdf:type schema:Person
71 N99c9e7c6f06e48ac97b161a01a51b20f rdf:first sg:person.01034346234.77
72 rdf:rest Ned15e638a9f349658ea31b3c1b967b8e
73 N9ac4c64a8e5b41b688b78002526dd554 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N9caed7e4d2d141c3b30f854745f0c8cd schema:name doi
76 schema:value 10.1023/a:1008628802726
77 rdf:type schema:PropertyValue
78 Na99153e6af1245669b7c10e18508968d schema:name dimensions_id
79 schema:value pub.1004598994
80 rdf:type schema:PropertyValue
81 Ned15e638a9f349658ea31b3c1b967b8e rdf:first N7abf7f820fd541da8fceebb2722ce56d
82 rdf:rest rdf:nil
83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
84 schema:name Information and Computing Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
87 schema:name Artificial Intelligence and Image Processing
88 rdf:type schema:DefinedTerm
89 sg:journal.1327483 schema:issn 0925-9902
90 1573-7675
91 schema:name Journal of Intelligent Information Systems
92 schema:publisher Springer Nature
93 rdf:type schema:Periodical
94 sg:person.01034346234.77 schema:affiliation grid-institutes:grid.266832.b
95 schema:familyName Helman
96 schema:givenName Paul
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034346234.77
98 rdf:type schema:Person
99 sg:pub.10.1007/bf00114802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022056766
100 https://doi.org/10.1007/bf00114802
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf00116827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004239284
103 https://doi.org/10.1007/bf00116827
104 rdf:type schema:CreativeWork
105 grid-institutes:grid.266832.b schema:alternateName Department of Computer Science, University of New Mexico, 87131, Albuquerque, New Mexico
106 schema:name Department of Computer Science, University of New Mexico, 87131, Albuquerque, New Mexico
107 rdf:type schema:Organization
108 grid-institutes:grid.62560.37 schema:alternateName Channing Laboratory, Brigham and Women's Hospital, 02115-5804, Boston, Massachusetts
109 schema:name Channing Laboratory, Brigham and Women's Hospital, 02115-5804, Boston, Massachusetts
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...