Sobolev Spaces with Zero Boundary Values on Metric Spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-05

AUTHORS

Tero Kilpeläinen, Juha Kinnunen, Olli Martio

ABSTRACT

We generalize the definition of the first order Sobolev spaces with zero boundary values to an arbitrary metric space endowed with a Borel regular measure. We show that many classical results extend to the metric setting. These include completeness, lattice properties and removable sets.

PAGES

233-247

References to SciGraph publications

  • 1996-08. Sobolev spaces on an arbitrary metric space in POTENTIAL ANALYSIS
  • 1996-11. Monotone functions and quasiconformal mappings on Carnot groups in SIBERIAN MATHEMATICAL JOURNAL
  • Journal

    TITLE

    Potential Analysis

    ISSUE

    3

    VOLUME

    12

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1008601220456

    DOI

    http://dx.doi.org/10.1023/a:1008601220456

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013855764


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Jyv\u00e4skyl\u00e4", 
              "id": "https://www.grid.ac/institutes/grid.9681.6", 
              "name": [
                "Department of Mathematics, University of Jyv\u00e4skyl\u00e4, P.O. Box 35, FIN-40351, Jyv\u00e4skyl\u00e4, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kilpel\u00e4inen", 
            "givenName": "Tero", 
            "id": "sg:person.011161247457.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Helsinki", 
              "id": "https://www.grid.ac/institutes/grid.7737.4", 
              "name": [
                "Department of Mathematics, University of Helsinki, P.O. Box 4, FIN-00014, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kinnunen", 
            "givenName": "Juha", 
            "id": "sg:person.011165743031.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011165743031.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Helsinki", 
              "id": "https://www.grid.ac/institutes/grid.7737.4", 
              "name": [
                "Department of Mathematics, University of Helsinki, P.O. Box 4, FIN-00014, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Martio", 
            "givenName": "Olli", 
            "id": "sg:person.015111747001.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015111747001.94"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0022-1236(72)90025-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003709166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03605309308820992", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010809827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03605309408821025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019028470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0312(199610)49:10<1081::aid-cpa3>3.0.co;2-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021248889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1353/ajm.1996.0046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024984188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02106736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030158310", 
              "https://doi.org/10.1007/bf02106736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02106736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030158310", 
              "https://doi.org/10.1007/bf02106736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jfan.1996.2959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039518298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5802/aif.55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073139194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00275475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086205188", 
              "https://doi.org/10.1007/bf00275475"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-05", 
        "datePublishedReg": "2000-05-01", 
        "description": "We generalize the definition of the first order Sobolev spaces with zero boundary values to an arbitrary metric space endowed with a Borel regular measure. We show that many classical results extend to the metric setting. These include completeness, lattice properties and removable sets.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1008601220456", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135984", 
            "issn": [
              "0926-2601", 
              "1572-929X"
            ], 
            "name": "Potential Analysis", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "name": "Sobolev Spaces with Zero Boundary Values on Metric Spaces", 
        "pagination": "233-247", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "42017fff0df70c7ef959e90cef0c40364d387f65811b260413edc94c512eb042"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1008601220456"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013855764"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1008601220456", 
          "https://app.dimensions.ai/details/publication/pub.1013855764"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000536.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023%2FA%3A1008601220456"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008601220456'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008601220456'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008601220456'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008601220456'


     

    This table displays all metadata directly associated to this object as RDF triples.

    99 TRIPLES      20 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1008601220456 schema:author Ned54f18b0be24162a23f96960fa63778
    2 schema:citation sg:pub.10.1007/bf00275475
    3 sg:pub.10.1007/bf02106736
    4 https://doi.org/10.1002/(sici)1097-0312(199610)49:10<1081::aid-cpa3>3.0.co;2-a
    5 https://doi.org/10.1006/jfan.1996.2959
    6 https://doi.org/10.1016/0022-1236(72)90025-0
    7 https://doi.org/10.1080/03605309308820992
    8 https://doi.org/10.1080/03605309408821025
    9 https://doi.org/10.1353/ajm.1996.0046
    10 https://doi.org/10.5802/aif.55
    11 schema:datePublished 2000-05
    12 schema:datePublishedReg 2000-05-01
    13 schema:description We generalize the definition of the first order Sobolev spaces with zero boundary values to an arbitrary metric space endowed with a Borel regular measure. We show that many classical results extend to the metric setting. These include completeness, lattice properties and removable sets.
    14 schema:genre research_article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N62c4b452175c4b1a9c9c4912c45499c9
    18 Nea87284b2ea64e2b95ea0991559c7dd5
    19 sg:journal.1135984
    20 schema:name Sobolev Spaces with Zero Boundary Values on Metric Spaces
    21 schema:pagination 233-247
    22 schema:productId N05a535c928dc4e668cb9056cc05553dc
    23 N0fd9c53acaa5453d8e3a07aca0b98651
    24 N3f896525e5974ba7a12fee54fb3b8a2a
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013855764
    26 https://doi.org/10.1023/a:1008601220456
    27 schema:sdDatePublished 2019-04-10T22:37
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher Na41425061ac442f892bbcbe7347b6425
    30 schema:url http://link.springer.com/10.1023%2FA%3A1008601220456
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset articles
    33 rdf:type schema:ScholarlyArticle
    34 N05a535c928dc4e668cb9056cc05553dc schema:name readcube_id
    35 schema:value 42017fff0df70c7ef959e90cef0c40364d387f65811b260413edc94c512eb042
    36 rdf:type schema:PropertyValue
    37 N0fd9c53acaa5453d8e3a07aca0b98651 schema:name doi
    38 schema:value 10.1023/a:1008601220456
    39 rdf:type schema:PropertyValue
    40 N3f896525e5974ba7a12fee54fb3b8a2a schema:name dimensions_id
    41 schema:value pub.1013855764
    42 rdf:type schema:PropertyValue
    43 N58f8047c1b574ab59a4158e28538eaad rdf:first sg:person.015111747001.94
    44 rdf:rest rdf:nil
    45 N62c4b452175c4b1a9c9c4912c45499c9 schema:issueNumber 3
    46 rdf:type schema:PublicationIssue
    47 Na41425061ac442f892bbcbe7347b6425 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 Nc4f133e8a7be4d95b05a3d256bc953dc rdf:first sg:person.011165743031.07
    50 rdf:rest N58f8047c1b574ab59a4158e28538eaad
    51 Nea87284b2ea64e2b95ea0991559c7dd5 schema:volumeNumber 12
    52 rdf:type schema:PublicationVolume
    53 Ned54f18b0be24162a23f96960fa63778 rdf:first sg:person.011161247457.34
    54 rdf:rest Nc4f133e8a7be4d95b05a3d256bc953dc
    55 sg:journal.1135984 schema:issn 0926-2601
    56 1572-929X
    57 schema:name Potential Analysis
    58 rdf:type schema:Periodical
    59 sg:person.011161247457.34 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
    60 schema:familyName Kilpeläinen
    61 schema:givenName Tero
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34
    63 rdf:type schema:Person
    64 sg:person.011165743031.07 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
    65 schema:familyName Kinnunen
    66 schema:givenName Juha
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011165743031.07
    68 rdf:type schema:Person
    69 sg:person.015111747001.94 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
    70 schema:familyName Martio
    71 schema:givenName Olli
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015111747001.94
    73 rdf:type schema:Person
    74 sg:pub.10.1007/bf00275475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086205188
    75 https://doi.org/10.1007/bf00275475
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/bf02106736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030158310
    78 https://doi.org/10.1007/bf02106736
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1002/(sici)1097-0312(199610)49:10<1081::aid-cpa3>3.0.co;2-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1021248889
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1006/jfan.1996.2959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039518298
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/0022-1236(72)90025-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003709166
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1080/03605309308820992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010809827
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1080/03605309408821025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019028470
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1353/ajm.1996.0046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024984188
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.5802/aif.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139194
    93 rdf:type schema:CreativeWork
    94 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
    95 schema:name Department of Mathematics, University of Helsinki, P.O. Box 4, FIN-00014, Finland
    96 rdf:type schema:Organization
    97 https://www.grid.ac/institutes/grid.9681.6 schema:alternateName University of Jyväskylä
    98 schema:name Department of Mathematics, University of Jyväskylä, P.O. Box 35, FIN-40351, Jyväskylä, Finland
    99 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...