Tidal effects in the earth–moon system and the earth's rotation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-09

AUTHORS

G. A. krasinsky

ABSTRACT

Analytical expressions for tidal torques induced by a tide‐arising planet which perturbs rotation of a nonrigid body are derived. Corresponding expressions both for secular and periodic perturbations of the Euler's angles are given for the case of the earth's rotation. Centennial secular rates of the nutation angle θ and of the earth's angular velocity ω, as well as the centennial logarithmic decrement ν of the Chandler wobble are evaluated: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\dot \theta }$$ \end{document} mas, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot \omega /\omega = - 5.08{\text{ mas }} = {\text{ }} - 24.6{\text{ }} \times {\text{ }}10^{ - 9} ,{\text{ }}v = - 12.3{\text{ mas}}$$ \end{document}.In the Universal Time (UT) a large out‐of‐phase (sine) dissipative term with the period 18.6 years and the amplitude 2.3 ms is found. Corrections to nutation coefficients, which presumably have not been taken into account in IAU theory, are given. More... »

PAGES

39-66

References to SciGraph publications

  • 1991-03. A Hamiltonian theory for an elastic earth: Elastic energy of deformation in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1991-03. A Hamiltonian theory for an elastic earth: First order analytical integration in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1972-09. The secular accelerations of the moon's orbital motion and the earth's rotation in EARTH, MOON, AND PLANETS
  • 1990-09. The theory of the nutation for the rigid earth model at the second order in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1997. Estimation of the Lunar Physical Librations in DYNAMICS AND ASTROMETRY OF NATURAL AND ARTIFICIAL CELESTIAL BODIES
  • 1997. Analysis of LLR Data by the Program System Era in DYNAMICS AND ASTROMETRY OF NATURAL AND ARTIFICIAL CELESTIAL BODIES
  • 1977-04. Theory of the rotation of the rigid earth in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1982-05. 1980 IAU Theory of Nutation: The final report of the IAU Working Group on Nutation in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1008381000993

    DOI

    http://dx.doi.org/10.1023/a:1008381000993

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020962961


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Applied Astronomy, St. Petersburg, Russia", 
              "id": "http://www.grid.ac/institutes/grid.465424.5", 
              "name": [
                "Institute of Applied Astronomy, St. Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "krasinsky", 
            "givenName": "G. A.", 
            "id": "sg:person.011040560377.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040560377.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02426668", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040720258", 
              "https://doi.org/10.1007/bf02426668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-5534-2_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005872602", 
              "https://doi.org/10.1007/978-94-011-5534-2_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-5534-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022294038", 
              "https://doi.org/10.1007/978-94-011-5534-2_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00563082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045320758", 
              "https://doi.org/10.1007/bf00563082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01228425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047586761", 
              "https://doi.org/10.1007/bf01228425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02426669", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047694489", 
              "https://doi.org/10.1007/bf02426669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01228952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012049042", 
              "https://doi.org/10.1007/bf01228952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02524332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049663456", 
              "https://doi.org/10.1007/bf02524332"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-09", 
        "datePublishedReg": "1999-09-01", 
        "description": "Analytical expressions for tidal torques induced by a tide\u2010arising planet which perturbs rotation of a nonrigid body are derived. Corresponding expressions both for secular and periodic perturbations of the Euler's angles are given for the case of the earth's rotation. Centennial secular rates of the nutation angle \u03b8 and of the earth's angular velocity \u03c9, as well as the centennial logarithmic decrement \u03bd of the Chandler wobble are evaluated: \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$${\\dot \\theta }$$\n\\end{document}\u2009mas, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\dot \\omega /\\omega = - 5.08{\\text{ mas }} = {\\text{ }} - 24.6{\\text{ }} \\times {\\text{ }}10^{ - 9} ,{\\text{ }}v = - 12.3{\\text{ mas}}$$\n\\end{document}.In the Universal Time (UT) a large out\u2010of\u2010phase (sine) dissipative term with the period 18.6 years and the amplitude 2.3 ms is found. Corrections to nutation coefficients, which presumably have not been taken into account in IAU theory, are given.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1008381000993", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0923-2958", 
              "1572-9478"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "75"
          }
        ], 
        "keywords": [
          "Earth's rotation", 
          "universal time", 
          "Earth-Moon system", 
          "Chandler wobble", 
          "secular rate", 
          "tidal effects", 
          "Ma", 
          "nutation coefficients", 
          "tidal torque", 
          "planets", 
          "wobble", 
          "rotation", 
          "perturbations", 
          "body", 
          "years", 
          "correction", 
          "time", 
          "coefficient", 
          "angle", 
          "rate", 
          "periodic perturbation", 
          "dissipative term", 
          "account", 
          "system", 
          "terms", 
          "velocity \u03c9", 
          "analytical expressions", 
          "effect", 
          "cases", 
          "angular velocity \u03a9", 
          "theory", 
          "angle \u03b8", 
          "torque", 
          "expression", 
          "Euler angles", 
          "nonrigid bodies"
        ], 
        "name": "Tidal effects in the earth\u2013moon system and the earth's rotation", 
        "pagination": "39-66", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020962961"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1008381000993"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1008381000993", 
          "https://app.dimensions.ai/details/publication/pub.1020962961"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T09:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_346.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1008381000993"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008381000993'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008381000993'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008381000993'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008381000993'


     

    This table displays all metadata directly associated to this object as RDF triples.

    126 TRIPLES      22 PREDICATES      70 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1008381000993 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N574dab3b96914b8687d698a760bb5d83
    4 schema:citation sg:pub.10.1007/978-94-011-5534-2_29
    5 sg:pub.10.1007/978-94-011-5534-2_3
    6 sg:pub.10.1007/bf00563082
    7 sg:pub.10.1007/bf01228425
    8 sg:pub.10.1007/bf01228952
    9 sg:pub.10.1007/bf02426668
    10 sg:pub.10.1007/bf02426669
    11 sg:pub.10.1007/bf02524332
    12 schema:datePublished 1999-09
    13 schema:datePublishedReg 1999-09-01
    14 schema:description Analytical expressions for tidal torques induced by a tide‐arising planet which perturbs rotation of a nonrigid body are derived. Corresponding expressions both for secular and periodic perturbations of the Euler's angles are given for the case of the earth's rotation. Centennial secular rates of the nutation angle θ and of the earth's angular velocity ω, as well as the centennial logarithmic decrement ν of the Chandler wobble are evaluated: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\dot \theta }$$ \end{document} mas, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot \omega /\omega = - 5.08{\text{ mas }} = {\text{ }} - 24.6{\text{ }} \times {\text{ }}10^{ - 9} ,{\text{ }}v = - 12.3{\text{ mas}}$$ \end{document}.In the Universal Time (UT) a large out‐of‐phase (sine) dissipative term with the period 18.6 years and the amplitude 2.3 ms is found. Corrections to nutation coefficients, which presumably have not been taken into account in IAU theory, are given.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N850bef1c51c44a609517a3c3157e4bd0
    19 N9ab68d4c84af4859b971cad47c758ad2
    20 sg:journal.1136436
    21 schema:keywords Chandler wobble
    22 Earth's rotation
    23 Earth-Moon system
    24 Euler angles
    25 Ma
    26 account
    27 analytical expressions
    28 angle
    29 angle θ
    30 angular velocity Ω
    31 body
    32 cases
    33 coefficient
    34 correction
    35 dissipative term
    36 effect
    37 expression
    38 nonrigid bodies
    39 nutation coefficients
    40 periodic perturbation
    41 perturbations
    42 planets
    43 rate
    44 rotation
    45 secular rate
    46 system
    47 terms
    48 theory
    49 tidal effects
    50 tidal torque
    51 time
    52 torque
    53 universal time
    54 velocity ω
    55 wobble
    56 years
    57 schema:name Tidal effects in the earth–moon system and the earth's rotation
    58 schema:pagination 39-66
    59 schema:productId Nab7877f5b503486f8e57e9955fd81cf2
    60 Nc8ece51dc83e42229153e8a7e69f67b1
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020962961
    62 https://doi.org/10.1023/a:1008381000993
    63 schema:sdDatePublished 2022-05-10T09:48
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher N49ab54c13cc545fdbaa2ba315cbd8289
    66 schema:url https://doi.org/10.1023/a:1008381000993
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N49ab54c13cc545fdbaa2ba315cbd8289 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 N574dab3b96914b8687d698a760bb5d83 rdf:first sg:person.011040560377.45
    73 rdf:rest rdf:nil
    74 N850bef1c51c44a609517a3c3157e4bd0 schema:volumeNumber 75
    75 rdf:type schema:PublicationVolume
    76 N9ab68d4c84af4859b971cad47c758ad2 schema:issueNumber 1
    77 rdf:type schema:PublicationIssue
    78 Nab7877f5b503486f8e57e9955fd81cf2 schema:name doi
    79 schema:value 10.1023/a:1008381000993
    80 rdf:type schema:PropertyValue
    81 Nc8ece51dc83e42229153e8a7e69f67b1 schema:name dimensions_id
    82 schema:value pub.1020962961
    83 rdf:type schema:PropertyValue
    84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Mathematical Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Applied Mathematics
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1136436 schema:issn 0923-2958
    91 1572-9478
    92 schema:name Celestial Mechanics and Dynamical Astronomy
    93 schema:publisher Springer Nature
    94 rdf:type schema:Periodical
    95 sg:person.011040560377.45 schema:affiliation grid-institutes:grid.465424.5
    96 schema:familyName krasinsky
    97 schema:givenName G. A.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040560377.45
    99 rdf:type schema:Person
    100 sg:pub.10.1007/978-94-011-5534-2_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005872602
    101 https://doi.org/10.1007/978-94-011-5534-2_29
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/978-94-011-5534-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022294038
    104 https://doi.org/10.1007/978-94-011-5534-2_3
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/bf00563082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045320758
    107 https://doi.org/10.1007/bf00563082
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/bf01228425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047586761
    110 https://doi.org/10.1007/bf01228425
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/bf01228952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012049042
    113 https://doi.org/10.1007/bf01228952
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/bf02426668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040720258
    116 https://doi.org/10.1007/bf02426668
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/bf02426669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047694489
    119 https://doi.org/10.1007/bf02426669
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/bf02524332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049663456
    122 https://doi.org/10.1007/bf02524332
    123 rdf:type schema:CreativeWork
    124 grid-institutes:grid.465424.5 schema:alternateName Institute of Applied Astronomy, St. Petersburg, Russia
    125 schema:name Institute of Applied Astronomy, St. Petersburg, Russia
    126 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...