Distance Geometry Optimization for Protein Structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-10

AUTHORS

Jorge J. Moré, Zhijun Wu

ABSTRACT

We study the performance of the dgsol code for the solution of distance geometry problems with lower and upper bounds on distance constraints. The dgsol code uses only a sparse set of distance constraints, while other algorithms tend to work with a dense set of constraints either by imposing additional bounds or by deducing bounds from the given bounds. Our computational results show that protein structures can be determined by solving a distance geometry problem with dgsol and that the approach based on dgsol is significantly more reliable and efficient than multi-starts with an optimization code. More... »

PAGES

219-234

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1008380219900

DOI

http://dx.doi.org/10.1023/a:1008380219900

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016639822


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rice University", 
          "id": "https://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Rice University, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mor\u00e9", 
        "givenName": "Jorge J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rice University", 
          "id": "https://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Rice University, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Zhijun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00940643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001911521", 
          "https://doi.org/10.1007/bf00940643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02192843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005571051", 
          "https://doi.org/10.1007/bf02192843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02192843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005571051", 
          "https://doi.org/10.1007/bf02192843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.91.6.2071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005647931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767391001071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036464667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.540150212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038964375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340220308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043556601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340220308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043556601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/174603.174605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046155330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.540140115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047280696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6107(91)90007-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050172988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500003966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054090072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500003966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054090072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00191a004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055164590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100163a040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055656000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100197a057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055658549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100345a090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055666021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/6.6.605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059980889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0805040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062854323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623493254698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883411"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-10", 
    "datePublishedReg": "1999-10-01", 
    "description": "We study the performance of the dgsol code for the solution of distance geometry problems with lower and upper bounds on distance constraints. The dgsol code uses only a sparse set of distance constraints, while other algorithms tend to work with a dense set of constraints either by imposing additional bounds or by deducing bounds from the given bounds. Our computational results show that protein structures can be determined by solving a distance geometry problem with dgsol and that the approach based on dgsol is significantly more reliable and efficient than multi-starts with an optimization code.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1008380219900", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050312", 
        "issn": [
          "0925-5001", 
          "1573-2916"
        ], 
        "name": "Journal of Global Optimization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Distance Geometry Optimization for Protein Structures", 
    "pagination": "219-234", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4f48a3bfb90feaad222d67ebbe2ce309365614b4e19606af7e2f70823db183c4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1008380219900"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016639822"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1008380219900", 
      "https://app.dimensions.ai/details/publication/pub.1016639822"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1008380219900"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008380219900'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008380219900'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008380219900'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008380219900'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1008380219900 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N58779c8d954c47b4936660589c85dabd
4 schema:citation sg:pub.10.1007/bf00940643
5 sg:pub.10.1007/bf02192843
6 https://doi.org/10.1002/jcc.540140115
7 https://doi.org/10.1002/jcc.540150212
8 https://doi.org/10.1002/prot.340220308
9 https://doi.org/10.1016/0079-6107(91)90007-f
10 https://doi.org/10.1017/s0033583500003966
11 https://doi.org/10.1021/bi00191a004
12 https://doi.org/10.1021/j100163a040
13 https://doi.org/10.1021/j100197a057
14 https://doi.org/10.1021/j100345a090
15 https://doi.org/10.1073/pnas.91.6.2071
16 https://doi.org/10.1093/protein/6.6.605
17 https://doi.org/10.1107/s0108767391001071
18 https://doi.org/10.1137/0805040
19 https://doi.org/10.1137/s1052623493254698
20 https://doi.org/10.1145/174603.174605
21 schema:datePublished 1999-10
22 schema:datePublishedReg 1999-10-01
23 schema:description We study the performance of the dgsol code for the solution of distance geometry problems with lower and upper bounds on distance constraints. The dgsol code uses only a sparse set of distance constraints, while other algorithms tend to work with a dense set of constraints either by imposing additional bounds or by deducing bounds from the given bounds. Our computational results show that protein structures can be determined by solving a distance geometry problem with dgsol and that the approach based on dgsol is significantly more reliable and efficient than multi-starts with an optimization code.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N003cfd1890ac43ee81ba9773642931d8
28 Nb051c96d41c146d39a2681289b783ac6
29 sg:journal.1050312
30 schema:name Distance Geometry Optimization for Protein Structures
31 schema:pagination 219-234
32 schema:productId N04e6e47890e74fbd9a337d271ecc23c8
33 N47c374be96044db28686d666a7972261
34 N4bf4808474074e3882bae93a71a8096e
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016639822
36 https://doi.org/10.1023/a:1008380219900
37 schema:sdDatePublished 2019-04-10T19:06
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nc9017c0aece44f378a71807268032cf6
40 schema:url http://link.springer.com/10.1023/A:1008380219900
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N003cfd1890ac43ee81ba9773642931d8 schema:volumeNumber 15
45 rdf:type schema:PublicationVolume
46 N04e6e47890e74fbd9a337d271ecc23c8 schema:name dimensions_id
47 schema:value pub.1016639822
48 rdf:type schema:PropertyValue
49 N27264b52a91045648c4fabe570033b91 schema:affiliation https://www.grid.ac/institutes/grid.21940.3e
50 schema:familyName Wu
51 schema:givenName Zhijun
52 rdf:type schema:Person
53 N47c374be96044db28686d666a7972261 schema:name readcube_id
54 schema:value 4f48a3bfb90feaad222d67ebbe2ce309365614b4e19606af7e2f70823db183c4
55 rdf:type schema:PropertyValue
56 N4bf4808474074e3882bae93a71a8096e schema:name doi
57 schema:value 10.1023/a:1008380219900
58 rdf:type schema:PropertyValue
59 N58779c8d954c47b4936660589c85dabd rdf:first N5cc68bcfdd4d447bb5268f0e262deecf
60 rdf:rest Na8ee74be9a5a4458ac49bc2ad57de06c
61 N5cc68bcfdd4d447bb5268f0e262deecf schema:affiliation https://www.grid.ac/institutes/grid.21940.3e
62 schema:familyName Moré
63 schema:givenName Jorge J.
64 rdf:type schema:Person
65 Na8ee74be9a5a4458ac49bc2ad57de06c rdf:first N27264b52a91045648c4fabe570033b91
66 rdf:rest rdf:nil
67 Nb051c96d41c146d39a2681289b783ac6 schema:issueNumber 3
68 rdf:type schema:PublicationIssue
69 Nc9017c0aece44f378a71807268032cf6 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
75 schema:name Numerical and Computational Mathematics
76 rdf:type schema:DefinedTerm
77 sg:journal.1050312 schema:issn 0925-5001
78 1573-2916
79 schema:name Journal of Global Optimization
80 rdf:type schema:Periodical
81 sg:pub.10.1007/bf00940643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001911521
82 https://doi.org/10.1007/bf00940643
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf02192843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005571051
85 https://doi.org/10.1007/bf02192843
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1002/jcc.540140115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047280696
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1002/jcc.540150212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038964375
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/prot.340220308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043556601
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0079-6107(91)90007-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1050172988
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1017/s0033583500003966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054090072
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1021/bi00191a004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055164590
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1021/j100163a040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055656000
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1021/j100197a057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055658549
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1021/j100345a090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055666021
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1073/pnas.91.6.2071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005647931
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1093/protein/6.6.605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059980889
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1107/s0108767391001071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036464667
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1137/0805040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062854323
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1137/s1052623493254698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883411
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1145/174603.174605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046155330
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.21940.3e schema:alternateName Rice University
118 schema:name Rice University, Houston, Texas, USA
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...