The State of Elliptic Curve Cryptography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-03

AUTHORS

Neal Koblitz, Alfred Menezes, Scott Vanstone

ABSTRACT

Since the introduction of public-key cryptography by Diffie and Hellman in 1976, the potential for the use of the discrete logarithm problem in public-key cryptosystems has been recognized. Although the discrete logarithm problem as first employed by Diffie and Hellman was defined explicitly as the problem of finding logarithms with respect to a generator in the multiplicative group of the integers modulo a prime, this idea can be extended to arbitrary groups and, in particular, to elliptic curve groups. The resulting public-key systems provide relatively small block size, high speed, and high security. This paper surveys the development of elliptic curve cryptosystems from their inception in 1985 by Koblitz and Miller to present day implementations. More... »

PAGES

173-193

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1008354106356

DOI

http://dx.doi.org/10.1023/a:1008354106356

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020246677


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dept. of Mathematics, University of Washington, Box 354350, 98195, Seattle, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Dept. of Mathematics, University of Washington, Box 354350, 98195, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koblitz", 
        "givenName": "Neal", 
        "id": "sg:person.015751265415.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015751265415.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of C&O, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Dept. of C&O, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Menezes", 
        "givenName": "Alfred", 
        "id": "sg:person.012711653371.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012711653371.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of C&O, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Dept. of C&O, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanstone", 
        "givenName": "Scott", 
        "id": "sg:person.010344544767.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02351719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025449195", 
          "https://doi.org/10.1007/bf02351719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001459900020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005587797", 
          "https://doi.org/10.1007/s001459900020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00196728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023535353", 
          "https://doi.org/10.1007/bf00196728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00203817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046570674", 
          "https://doi.org/10.1007/bf00203817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02684339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021038002", 
          "https://doi.org/10.1007/bf02684339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02351718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045674485", 
          "https://doi.org/10.1007/bf02351718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00196911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001368228", 
          "https://doi.org/10.1007/bf00196911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001459900040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039888604", 
          "https://doi.org/10.1007/s001459900040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00196789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020123700", 
          "https://doi.org/10.1007/bf00196789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02252872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008777174", 
          "https://doi.org/10.1007/bf02252872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00196725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043691009", 
          "https://doi.org/10.1007/bf00196725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00125081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021297564", 
          "https://doi.org/10.1007/bf00125081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008240113843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048389311", 
          "https://doi.org/10.1023/a:1008240113843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02318548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017412502", 
          "https://doi.org/10.1007/bf02318548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00003816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040926849", 
          "https://doi.org/10.1007/pl00003816"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-03", 
    "datePublishedReg": "2000-03-01", 
    "description": "Since the introduction of public-key cryptography by Diffie and Hellman in 1976, the potential for the use of the discrete logarithm problem in public-key cryptosystems has been recognized. Although the discrete logarithm problem as first employed by Diffie and Hellman was defined explicitly as the problem of finding logarithms with respect to a generator in the multiplicative group of the integers modulo a prime, this idea can be extended to arbitrary groups and, in particular, to elliptic curve groups. The resulting public-key systems provide relatively small block size, high speed, and high security. This paper surveys the development of elliptic curve cryptosystems from their inception in 1985 by Koblitz and Miller to present day implementations.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1008354106356", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136552", 
        "issn": [
          "0925-1022", 
          "1573-7586"
        ], 
        "name": "Designs, Codes and Cryptography", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "discrete logarithm problem", 
      "logarithm problem", 
      "elliptic curve cryptography", 
      "elliptic curve cryptosystem", 
      "public key cryptography", 
      "elliptic curve group", 
      "public key cryptosystem", 
      "public key system", 
      "small block size", 
      "high security", 
      "curve group", 
      "block size", 
      "cryptography", 
      "cryptosystem", 
      "Diffie", 
      "present-day implementation", 
      "Hellman", 
      "integers modulo", 
      "high speed", 
      "Koblitz", 
      "security", 
      "multiplicative group", 
      "arbitrary groups", 
      "implementation", 
      "system", 
      "idea", 
      "speed", 
      "modulo", 
      "generator", 
      "day implementation", 
      "use", 
      "development", 
      "state", 
      "introduction", 
      "respect", 
      "size", 
      "primes", 
      "inception", 
      "logarithm", 
      "potential", 
      "group", 
      "Miller", 
      "problem", 
      "paper"
    ], 
    "name": "The State of Elliptic Curve Cryptography", 
    "pagination": "173-193", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020246677"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1008354106356"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1008354106356", 
      "https://app.dimensions.ai/details/publication/pub.1020246677"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_320.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1008354106356"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008354106356'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008354106356'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008354106356'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008354106356'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      84 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1008354106356 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N16cc2f90b9da413b8974d1f77b168351
4 schema:citation sg:pub.10.1007/bf00125081
5 sg:pub.10.1007/bf00196725
6 sg:pub.10.1007/bf00196728
7 sg:pub.10.1007/bf00196789
8 sg:pub.10.1007/bf00196911
9 sg:pub.10.1007/bf00203817
10 sg:pub.10.1007/bf02252872
11 sg:pub.10.1007/bf02318548
12 sg:pub.10.1007/bf02351718
13 sg:pub.10.1007/bf02351719
14 sg:pub.10.1007/bf02684339
15 sg:pub.10.1007/pl00003816
16 sg:pub.10.1007/s001459900020
17 sg:pub.10.1007/s001459900040
18 sg:pub.10.1023/a:1008240113843
19 schema:datePublished 2000-03
20 schema:datePublishedReg 2000-03-01
21 schema:description Since the introduction of public-key cryptography by Diffie and Hellman in 1976, the potential for the use of the discrete logarithm problem in public-key cryptosystems has been recognized. Although the discrete logarithm problem as first employed by Diffie and Hellman was defined explicitly as the problem of finding logarithms with respect to a generator in the multiplicative group of the integers modulo a prime, this idea can be extended to arbitrary groups and, in particular, to elliptic curve groups. The resulting public-key systems provide relatively small block size, high speed, and high security. This paper surveys the development of elliptic curve cryptosystems from their inception in 1985 by Koblitz and Miller to present day implementations.
22 schema:genre article
23 schema:isAccessibleForFree false
24 schema:isPartOf N522dedfecdb94e5cadd6f7fce006a326
25 Nd3e40c7a91574a5d9bae371961156f76
26 sg:journal.1136552
27 schema:keywords Diffie
28 Hellman
29 Koblitz
30 Miller
31 arbitrary groups
32 block size
33 cryptography
34 cryptosystem
35 curve group
36 day implementation
37 development
38 discrete logarithm problem
39 elliptic curve cryptography
40 elliptic curve cryptosystem
41 elliptic curve group
42 generator
43 group
44 high security
45 high speed
46 idea
47 implementation
48 inception
49 integers modulo
50 introduction
51 logarithm
52 logarithm problem
53 modulo
54 multiplicative group
55 paper
56 potential
57 present-day implementation
58 primes
59 problem
60 public key cryptography
61 public key cryptosystem
62 public key system
63 respect
64 security
65 size
66 small block size
67 speed
68 state
69 system
70 use
71 schema:name The State of Elliptic Curve Cryptography
72 schema:pagination 173-193
73 schema:productId N5b8f70c5031a41e5a777572d17e55f8e
74 N808cb691fbe84771b884c06e6a956dfe
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020246677
76 https://doi.org/10.1023/a:1008354106356
77 schema:sdDatePublished 2022-09-02T15:49
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Ncba1c61d02744af68556743fa0e75710
80 schema:url https://doi.org/10.1023/a:1008354106356
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N16cc2f90b9da413b8974d1f77b168351 rdf:first sg:person.015751265415.45
85 rdf:rest N5b8d9fc30f5c45b4b24f9ef65ec499bc
86 N522dedfecdb94e5cadd6f7fce006a326 schema:issueNumber 2-3
87 rdf:type schema:PublicationIssue
88 N5b8d9fc30f5c45b4b24f9ef65ec499bc rdf:first sg:person.012711653371.43
89 rdf:rest N65c671ab4ebc460faf196bd5420b6a79
90 N5b8f70c5031a41e5a777572d17e55f8e schema:name dimensions_id
91 schema:value pub.1020246677
92 rdf:type schema:PropertyValue
93 N65c671ab4ebc460faf196bd5420b6a79 rdf:first sg:person.010344544767.07
94 rdf:rest rdf:nil
95 N808cb691fbe84771b884c06e6a956dfe schema:name doi
96 schema:value 10.1023/a:1008354106356
97 rdf:type schema:PropertyValue
98 Ncba1c61d02744af68556743fa0e75710 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Nd3e40c7a91574a5d9bae371961156f76 schema:volumeNumber 19
101 rdf:type schema:PublicationVolume
102 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
103 schema:name Information and Computing Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
106 schema:name Data Format
107 rdf:type schema:DefinedTerm
108 sg:journal.1136552 schema:issn 0925-1022
109 1573-7586
110 schema:name Designs, Codes and Cryptography
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.010344544767.07 schema:affiliation grid-institutes:grid.46078.3d
114 schema:familyName Vanstone
115 schema:givenName Scott
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07
117 rdf:type schema:Person
118 sg:person.012711653371.43 schema:affiliation grid-institutes:grid.46078.3d
119 schema:familyName Menezes
120 schema:givenName Alfred
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012711653371.43
122 rdf:type schema:Person
123 sg:person.015751265415.45 schema:affiliation grid-institutes:grid.34477.33
124 schema:familyName Koblitz
125 schema:givenName Neal
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015751265415.45
127 rdf:type schema:Person
128 sg:pub.10.1007/bf00125081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021297564
129 https://doi.org/10.1007/bf00125081
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bf00196725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043691009
132 https://doi.org/10.1007/bf00196725
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/bf00196728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023535353
135 https://doi.org/10.1007/bf00196728
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf00196789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020123700
138 https://doi.org/10.1007/bf00196789
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/bf00196911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001368228
141 https://doi.org/10.1007/bf00196911
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/bf00203817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046570674
144 https://doi.org/10.1007/bf00203817
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/bf02252872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008777174
147 https://doi.org/10.1007/bf02252872
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf02318548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017412502
150 https://doi.org/10.1007/bf02318548
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/bf02351718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045674485
153 https://doi.org/10.1007/bf02351718
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/bf02351719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025449195
156 https://doi.org/10.1007/bf02351719
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/bf02684339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021038002
159 https://doi.org/10.1007/bf02684339
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/pl00003816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040926849
162 https://doi.org/10.1007/pl00003816
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s001459900020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005587797
165 https://doi.org/10.1007/s001459900020
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s001459900040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039888604
168 https://doi.org/10.1007/s001459900040
169 rdf:type schema:CreativeWork
170 sg:pub.10.1023/a:1008240113843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048389311
171 https://doi.org/10.1023/a:1008240113843
172 rdf:type schema:CreativeWork
173 grid-institutes:grid.34477.33 schema:alternateName Dept. of Mathematics, University of Washington, Box 354350, 98195, Seattle, WA, USA
174 schema:name Dept. of Mathematics, University of Washington, Box 354350, 98195, Seattle, WA, USA
175 rdf:type schema:Organization
176 grid-institutes:grid.46078.3d schema:alternateName Dept. of C&O, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
177 schema:name Dept. of C&O, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...