Variable Load Factor Guidance for Low-Altitude Fly-to-Point Maneuvers of a Jet Fighter Aircraft View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-04

AUTHORS

J. B. Dabney, A. Miele

ABSTRACT

This paper describes the formulation andnumerical investigation of a variable load factor guidance algorithm(variable n-guidance) that allows an aircraft pilotto approximate minimum-time low-altitude quasi-level fly-to-pointmaneuvers of a jet fighter aircraft. The maneuvers studied consistof flight to a point at a radial distance of 50 kft from thestarting point, with the final position vector oriented at 45,90, 135, 180 deg from the initial course and with the requirementthat the initial and final altitudes be the same.First, the fly-to-point maneuver is optimized from the time viewpointwith respect to three controls (angle of attack, power setting,angle of bank) via the sequential gradient-restoration algorithm.Then, from the study of the optimal trajectories, a variablen-guidance algorithm is developed, connecting theload factor to the turn-to-go. This algorithm is implementedvia feedback control and tested. For comparison purposes, a constantn-guidance scheme is also tested. The main conclusionis that the variable n-guidance algorithm producestrajectories that approximate closely the optimal trajectories.On the other hand, the constant n-guidance schemedoes not approximate well the optimal trajectories. More... »

PAGES

195-212

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1008352104860

DOI

http://dx.doi.org/10.1023/a:1008352104860

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040971422


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas", 
          "id": "http://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dabney", 
        "givenName": "J. B.", 
        "id": "sg:person.0750321724.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750321724.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A. J. Foyt Professor Emeritus of Engineering, Aerospace Sciences, and Mathematical Sciences, Rice University, Houston, Texas", 
          "id": "http://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "A. J. Foyt Professor Emeritus of Engineering, Aerospace Sciences, and Mathematical Sciences, Rice University, Houston, Texas"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miele", 
        "givenName": "A.", 
        "id": "sg:person.015552732657.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00933463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007322541", 
          "https://doi.org/10.1007/bf00933463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00935541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049352093", 
          "https://doi.org/10.1007/bf00935541"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-04", 
    "datePublishedReg": "2000-04-01", 
    "description": "This paper describes the formulation andnumerical investigation of a variable load factor guidance algorithm(variable n-guidance) that allows an aircraft pilotto approximate minimum-time low-altitude quasi-level fly-to-pointmaneuvers of a jet fighter aircraft. The maneuvers studied consistof flight to a point at a radial distance of 50 kft from thestarting point, with the final position vector oriented at 45,90, 135, 180 deg from the initial course and with the requirementthat the initial and final altitudes be the same.First, the fly-to-point maneuver is optimized from the time viewpointwith respect to three controls (angle of attack, power setting,angle of bank) via the sequential gradient-restoration algorithm.Then, from the study of the optimal trajectories, a variablen-guidance algorithm is developed, connecting theload factor to the turn-to-go. This algorithm is implementedvia feedback control and tested. For comparison purposes, a constantn-guidance scheme is also tested. The main conclusionis that the variable n-guidance algorithm producestrajectories that approximate closely the optimal trajectories.On the other hand, the constant n-guidance schemedoes not approximate well the optimal trajectories.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1008352104860", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1284749", 
        "issn": [
          "0925-4668", 
          "1573-8450"
        ], 
        "name": "Dynamics and Control", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "jet fighter aircraft", 
      "point maneuver", 
      "fighter aircraft", 
      "optimal trajectories", 
      "feedback control", 
      "aircraft", 
      "comparison purposes", 
      "final altitude", 
      "final position vectors", 
      "position vector", 
      "sequential gradient-restoration algorithm", 
      "radial distance", 
      "gradient-restoration algorithm", 
      "maneuvers", 
      "algorithm", 
      "trajectories", 
      "GO", 
      "flight", 
      "scheme", 
      "point", 
      "kft", 
      "control", 
      "investigation", 
      "altitude", 
      "guidance", 
      "deg", 
      "distance", 
      "respect", 
      "vector", 
      "hand", 
      "purpose", 
      "conclusionis", 
      "study", 
      "factors", 
      "flies", 
      "course", 
      "initial course", 
      "paper"
    ], 
    "name": "Variable Load Factor Guidance for Low-Altitude Fly-to-Point Maneuvers of a Jet Fighter Aircraft", 
    "pagination": "195-212", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040971422"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1008352104860"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1008352104860", 
      "https://app.dimensions.ai/details/publication/pub.1040971422"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_321.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1008352104860"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008352104860'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008352104860'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008352104860'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008352104860'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      65 URIs      55 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1008352104860 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author Ne8464f241ef14cc48291dd3abdaf2974
4 schema:citation sg:pub.10.1007/bf00933463
5 sg:pub.10.1007/bf00935541
6 schema:datePublished 2000-04
7 schema:datePublishedReg 2000-04-01
8 schema:description This paper describes the formulation andnumerical investigation of a variable load factor guidance algorithm(variable n-guidance) that allows an aircraft pilotto approximate minimum-time low-altitude quasi-level fly-to-pointmaneuvers of a jet fighter aircraft. The maneuvers studied consistof flight to a point at a radial distance of 50 kft from thestarting point, with the final position vector oriented at 45,90, 135, 180 deg from the initial course and with the requirementthat the initial and final altitudes be the same.First, the fly-to-point maneuver is optimized from the time viewpointwith respect to three controls (angle of attack, power setting,angle of bank) via the sequential gradient-restoration algorithm.Then, from the study of the optimal trajectories, a variablen-guidance algorithm is developed, connecting theload factor to the turn-to-go. This algorithm is implementedvia feedback control and tested. For comparison purposes, a constantn-guidance scheme is also tested. The main conclusionis that the variable n-guidance algorithm producestrajectories that approximate closely the optimal trajectories.On the other hand, the constant n-guidance schemedoes not approximate well the optimal trajectories.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N6122ac5b374449bd9e05e925d18d079b
12 Nb1cb971e23ff42559a8817b7b39e60b8
13 sg:journal.1284749
14 schema:keywords GO
15 aircraft
16 algorithm
17 altitude
18 comparison purposes
19 conclusionis
20 control
21 course
22 deg
23 distance
24 factors
25 feedback control
26 fighter aircraft
27 final altitude
28 final position vectors
29 flies
30 flight
31 gradient-restoration algorithm
32 guidance
33 hand
34 initial course
35 investigation
36 jet fighter aircraft
37 kft
38 maneuvers
39 optimal trajectories
40 paper
41 point
42 point maneuver
43 position vector
44 purpose
45 radial distance
46 respect
47 scheme
48 sequential gradient-restoration algorithm
49 study
50 trajectories
51 vector
52 schema:name Variable Load Factor Guidance for Low-Altitude Fly-to-Point Maneuvers of a Jet Fighter Aircraft
53 schema:pagination 195-212
54 schema:productId N51c6c55656d34fd385ea041f0289a36b
55 N7c82347d639346c6b60445e56afce85d
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040971422
57 https://doi.org/10.1023/a:1008352104860
58 schema:sdDatePublished 2022-12-01T06:22
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Ncc9bbc58ca6e4ca6a48246dc07d1c370
61 schema:url https://doi.org/10.1023/a:1008352104860
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N51c6c55656d34fd385ea041f0289a36b schema:name doi
66 schema:value 10.1023/a:1008352104860
67 rdf:type schema:PropertyValue
68 N6122ac5b374449bd9e05e925d18d079b schema:volumeNumber 10
69 rdf:type schema:PublicationVolume
70 N7c82347d639346c6b60445e56afce85d schema:name dimensions_id
71 schema:value pub.1040971422
72 rdf:type schema:PropertyValue
73 Na1de07c706d94b05848d17c7f775fa1c rdf:first sg:person.015552732657.49
74 rdf:rest rdf:nil
75 Nb1cb971e23ff42559a8817b7b39e60b8 schema:issueNumber 2
76 rdf:type schema:PublicationIssue
77 Ncc9bbc58ca6e4ca6a48246dc07d1c370 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Ne8464f241ef14cc48291dd3abdaf2974 rdf:first sg:person.0750321724.09
80 rdf:rest Na1de07c706d94b05848d17c7f775fa1c
81 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
82 schema:name Engineering
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
85 schema:name Electrical and Electronic Engineering
86 rdf:type schema:DefinedTerm
87 sg:journal.1284749 schema:issn 0925-4668
88 1573-8450
89 schema:name Dynamics and Control
90 schema:publisher Springer Nature
91 rdf:type schema:Periodical
92 sg:person.015552732657.49 schema:affiliation grid-institutes:grid.21940.3e
93 schema:familyName Miele
94 schema:givenName A.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49
96 rdf:type schema:Person
97 sg:person.0750321724.09 schema:affiliation grid-institutes:grid.21940.3e
98 schema:familyName Dabney
99 schema:givenName J. B.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750321724.09
101 rdf:type schema:Person
102 sg:pub.10.1007/bf00933463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007322541
103 https://doi.org/10.1007/bf00933463
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf00935541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049352093
106 https://doi.org/10.1007/bf00935541
107 rdf:type schema:CreativeWork
108 grid-institutes:grid.21940.3e schema:alternateName A. J. Foyt Professor Emeritus of Engineering, Aerospace Sciences, and Mathematical Sciences, Rice University, Houston, Texas
109 Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas
110 schema:name A. J. Foyt Professor Emeritus of Engineering, Aerospace Sciences, and Mathematical Sciences, Rice University, Houston, Texas
111 Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...