Efficient Global Optimization of Expensive Black-Box Functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-12

AUTHORS

Donald R. Jones, Matthias Schonlau, William J. Welch

ABSTRACT

In many engineering optimization problems, the number of function evaluations is severely limited by time or cost. These problems pose a special challenge to the field of global optimization, since existing methods often require more function evaluations than can be comfortably afforded. One way to address this challenge is to fit response surfaces to data collected by evaluating the objective and constraint functions at a few points. These surfaces can then be used for visualization, tradeoff analysis, and optimization. In this paper, we introduce the reader to a response surface methodology that is especially good at modeling the nonlinear, multimodal functions that often occur in engineering. We then show how these approximating functions can be used to construct an efficient global optimization algorithm with a credible stopping rule. The key to using response surfaces for global optimization lies in balancing the need to exploit the approximating surface (by sampling where it is minimized) with the need to improve the approximation (by sampling where prediction error may be high). Striking this balance requires solving certain auxiliary problems which have previously been considered intractable, but we show how these computational obstacles can be overcome. More... »

PAGES

455-492

References to SciGraph publications

  • 1990-04. The origins of kriging in MATHEMATICAL GEOSCIENCES
  • 1992-06. A review of statistical models for global optimization in JOURNAL OF GLOBAL OPTIMIZATION
  • 1997-01. Bayesian Algorithms for One-Dimensional Global Optimization in JOURNAL OF GLOBAL OPTIMIZATION
  • 1994-06. Application of Bayesian approach to numerical methods of global and stochastic optimization in JOURNAL OF GLOBAL OPTIMIZATION
  • 1998. Optimization Using Surrogate Objectives on a Helicopter Test Example in COMPUTATIONAL METHODS FOR OPTIMAL DESIGN AND CONTROL
  • 1991-03. Bayesian methods in global optimization in JOURNAL OF GLOBAL OPTIMIZATION
  • 1998-02. A trust-region framework for managing the use of approximation models in optimization in STRUCTURAL OPTIMIZATION
  • 1996-12. Predicting Urban Ozone Levels and Trends with Semiparametric Modeling in JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS
  • 1993-02. Multivariable spatial prediction in MATHEMATICAL GEOSCIENCES
  • 1995-12. αBB: A global optimization method for general constrained nonconvex problems in JOURNAL OF GLOBAL OPTIMIZATION
  • 1995. Stochastic Methods in HANDBOOK OF GLOBAL OPTIMIZATION
  • 1998. Evaluation of Injection Island GA Performance on Flywheel Design Optimisation in ADAPTIVE COMPUTING IN DESIGN AND MANUFACTURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1008306431147

    DOI

    http://dx.doi.org/10.1023/a:1008306431147

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009040383


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Operations Research Department, General Motors R&D Operations, Warren, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jones", 
            "givenName": "Donald R.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Statistical Sciences", 
              "id": "https://www.grid.ac/institutes/grid.294375.e", 
              "name": [
                "National Institute of Statistical Sciences, Research Triangle Park, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schonlau", 
            "givenName": "Matthias", 
            "id": "sg:person.013441124213.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013441124213.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Statistics and Actuarial Science and The Institute for Improvement in Quality and Productivity, University of Waterloo, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Welch", 
            "givenName": "William J.", 
            "id": "sg:person.01007263630.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007263630.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/1467-9876.00096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009253920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00122051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009357637", 
              "https://doi.org/10.1007/bf00122051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00122051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009357637", 
              "https://doi.org/10.1007/bf00122051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01099263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009575030", 
              "https://doi.org/10.1007/bf01099263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01099263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009575030", 
              "https://doi.org/10.1007/bf01099263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-2025-2_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012766947", 
              "https://doi.org/10.1007/978-1-4615-2025-2_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01099647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012829236", 
              "https://doi.org/10.1007/bf01099647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01099647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012829236", 
              "https://doi.org/10.1007/bf01099647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4471-1589-2_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019321526", 
              "https://doi.org/10.1007/978-1-4471-1589-2_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00889887", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022097516", 
              "https://doi.org/10.1007/bf00889887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1780-0_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023316128", 
              "https://doi.org/10.1007/978-1-4612-1780-0_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00120661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028408334", 
              "https://doi.org/10.1007/bf00120661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00120661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028408334", 
              "https://doi.org/10.1007/bf00120661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00893273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033649708", 
              "https://doi.org/10.1007/bf00893273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008294716304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047226412", 
              "https://doi.org/10.1023/a:1008294716304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01197433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053012243", 
              "https://doi.org/10.1007/bf01197433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01197433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053012243", 
              "https://doi.org/10.1007/bf01197433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00401706.1993.10485320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058286820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1991.10475138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/21.23094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061121651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3653121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062136659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/ss/1177012413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064409909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2113/gsecongeo.58.8.1246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068929315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1268522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069420824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1269548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069421210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2307/1400436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069472637", 
              "https://doi.org/10.2307/1400436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icsmc.1991.169748", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086331628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/lnms/1215456182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086780896"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-12", 
        "datePublishedReg": "1998-12-01", 
        "description": "In many engineering optimization problems, the number of function evaluations is severely limited by time or cost. These problems pose a special challenge to the field of global optimization, since existing methods often require more function evaluations than can be comfortably afforded. One way to address this challenge is to fit response surfaces to data collected by evaluating the objective and constraint functions at a few points. These surfaces can then be used for visualization, tradeoff analysis, and optimization. In this paper, we introduce the reader to a response surface methodology that is especially good at modeling the nonlinear, multimodal functions that often occur in engineering. We then show how these approximating functions can be used to construct an efficient global optimization algorithm with a credible stopping rule. The key to using response surfaces for global optimization lies in balancing the need to exploit the approximating surface (by sampling where it is minimized) with the need to improve the approximation (by sampling where prediction error may be high). Striking this balance requires solving certain auxiliary problems which have previously been considered intractable, but we show how these computational obstacles can be overcome.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1008306431147", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1050312", 
            "issn": [
              "0925-5001", 
              "1573-2916"
            ], 
            "name": "Journal of Global Optimization", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Efficient Global Optimization of Expensive Black-Box Functions", 
        "pagination": "455-492", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2b11e74b8db1cd25fe991b2b13031439acf2bb56f86676ce29c1f9b43b26f54f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1008306431147"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009040383"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1008306431147", 
          "https://app.dimensions.ai/details/publication/pub.1009040383"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000498.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1008306431147"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008306431147'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008306431147'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008306431147'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008306431147'


     

    This table displays all metadata directly associated to this object as RDF triples.

    160 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1008306431147 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author Nd5fb90e5029f47919e0a98167484357c
    4 schema:citation sg:pub.10.1007/978-1-4471-1589-2_10
    5 sg:pub.10.1007/978-1-4612-1780-0_3
    6 sg:pub.10.1007/978-1-4615-2025-2_15
    7 sg:pub.10.1007/bf00120661
    8 sg:pub.10.1007/bf00122051
    9 sg:pub.10.1007/bf00889887
    10 sg:pub.10.1007/bf00893273
    11 sg:pub.10.1007/bf01099263
    12 sg:pub.10.1007/bf01099647
    13 sg:pub.10.1007/bf01197433
    14 sg:pub.10.1023/a:1008294716304
    15 sg:pub.10.2307/1400436
    16 https://doi.org/10.1080/00401706.1993.10485320
    17 https://doi.org/10.1080/01621459.1991.10475138
    18 https://doi.org/10.1109/21.23094
    19 https://doi.org/10.1109/icsmc.1991.169748
    20 https://doi.org/10.1111/1467-9876.00096
    21 https://doi.org/10.1115/1.3653121
    22 https://doi.org/10.1214/lnms/1215456182
    23 https://doi.org/10.1214/ss/1177012413
    24 https://doi.org/10.2113/gsecongeo.58.8.1246
    25 https://doi.org/10.2307/1268522
    26 https://doi.org/10.2307/1269548
    27 schema:datePublished 1998-12
    28 schema:datePublishedReg 1998-12-01
    29 schema:description In many engineering optimization problems, the number of function evaluations is severely limited by time or cost. These problems pose a special challenge to the field of global optimization, since existing methods often require more function evaluations than can be comfortably afforded. One way to address this challenge is to fit response surfaces to data collected by evaluating the objective and constraint functions at a few points. These surfaces can then be used for visualization, tradeoff analysis, and optimization. In this paper, we introduce the reader to a response surface methodology that is especially good at modeling the nonlinear, multimodal functions that often occur in engineering. We then show how these approximating functions can be used to construct an efficient global optimization algorithm with a credible stopping rule. The key to using response surfaces for global optimization lies in balancing the need to exploit the approximating surface (by sampling where it is minimized) with the need to improve the approximation (by sampling where prediction error may be high). Striking this balance requires solving certain auxiliary problems which have previously been considered intractable, but we show how these computational obstacles can be overcome.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N76dd6dc894064c8d9a55eb2307d076be
    34 Ncebb6e192bac44d6868fcbe43d77d92a
    35 sg:journal.1050312
    36 schema:name Efficient Global Optimization of Expensive Black-Box Functions
    37 schema:pagination 455-492
    38 schema:productId N2dc6a1ed951d4e5a96e3eb2bec645e0f
    39 N5c364662143e4e479842876e27fdb8d0
    40 Ncb1256ec965e4b27ba71c84951b17bb7
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009040383
    42 https://doi.org/10.1023/a:1008306431147
    43 schema:sdDatePublished 2019-04-10T19:54
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Nd6f017c4e61944ceba817968f8b455b7
    46 schema:url http://link.springer.com/10.1023/A:1008306431147
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N2dc6a1ed951d4e5a96e3eb2bec645e0f schema:name doi
    51 schema:value 10.1023/a:1008306431147
    52 rdf:type schema:PropertyValue
    53 N4eebc59f91594a7fac2ac51e9af21f95 schema:name Operations Research Department, General Motors R&D Operations, Warren, MI, USA
    54 rdf:type schema:Organization
    55 N586291629f05457580d8bede6be6689f rdf:first sg:person.013441124213.88
    56 rdf:rest N7b60ac81d60e4cc28340fdd980e3bbe9
    57 N5c364662143e4e479842876e27fdb8d0 schema:name dimensions_id
    58 schema:value pub.1009040383
    59 rdf:type schema:PropertyValue
    60 N76dd6dc894064c8d9a55eb2307d076be schema:issueNumber 4
    61 rdf:type schema:PublicationIssue
    62 N7b60ac81d60e4cc28340fdd980e3bbe9 rdf:first sg:person.01007263630.26
    63 rdf:rest rdf:nil
    64 Nbb346c4795c24a8590c1019bfe25a835 schema:affiliation N4eebc59f91594a7fac2ac51e9af21f95
    65 schema:familyName Jones
    66 schema:givenName Donald R.
    67 rdf:type schema:Person
    68 Ncb1256ec965e4b27ba71c84951b17bb7 schema:name readcube_id
    69 schema:value 2b11e74b8db1cd25fe991b2b13031439acf2bb56f86676ce29c1f9b43b26f54f
    70 rdf:type schema:PropertyValue
    71 Ncebb6e192bac44d6868fcbe43d77d92a schema:volumeNumber 13
    72 rdf:type schema:PublicationVolume
    73 Nd5fb90e5029f47919e0a98167484357c rdf:first Nbb346c4795c24a8590c1019bfe25a835
    74 rdf:rest N586291629f05457580d8bede6be6689f
    75 Nd6f017c4e61944ceba817968f8b455b7 schema:name Springer Nature - SN SciGraph project
    76 rdf:type schema:Organization
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Numerical and Computational Mathematics
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1050312 schema:issn 0925-5001
    84 1573-2916
    85 schema:name Journal of Global Optimization
    86 rdf:type schema:Periodical
    87 sg:person.01007263630.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    88 schema:familyName Welch
    89 schema:givenName William J.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007263630.26
    91 rdf:type schema:Person
    92 sg:person.013441124213.88 schema:affiliation https://www.grid.ac/institutes/grid.294375.e
    93 schema:familyName Schonlau
    94 schema:givenName Matthias
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013441124213.88
    96 rdf:type schema:Person
    97 sg:pub.10.1007/978-1-4471-1589-2_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019321526
    98 https://doi.org/10.1007/978-1-4471-1589-2_10
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/978-1-4612-1780-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023316128
    101 https://doi.org/10.1007/978-1-4612-1780-0_3
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/978-1-4615-2025-2_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012766947
    104 https://doi.org/10.1007/978-1-4615-2025-2_15
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/bf00120661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028408334
    107 https://doi.org/10.1007/bf00120661
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/bf00122051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009357637
    110 https://doi.org/10.1007/bf00122051
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/bf00889887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022097516
    113 https://doi.org/10.1007/bf00889887
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/bf00893273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033649708
    116 https://doi.org/10.1007/bf00893273
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/bf01099263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009575030
    119 https://doi.org/10.1007/bf01099263
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/bf01099647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012829236
    122 https://doi.org/10.1007/bf01099647
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/bf01197433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053012243
    125 https://doi.org/10.1007/bf01197433
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1023/a:1008294716304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047226412
    128 https://doi.org/10.1023/a:1008294716304
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.2307/1400436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069472637
    131 https://doi.org/10.2307/1400436
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1080/00401706.1993.10485320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058286820
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1080/01621459.1991.10475138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304167
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/21.23094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121651
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/icsmc.1991.169748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086331628
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1111/1467-9876.00096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009253920
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1115/1.3653121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062136659
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1214/lnms/1215456182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086780896
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1214/ss/1177012413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409909
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.2113/gsecongeo.58.8.1246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068929315
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.2307/1268522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069420824
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.2307/1269548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069421210
    154 rdf:type schema:CreativeWork
    155 https://www.grid.ac/institutes/grid.294375.e schema:alternateName National Institute of Statistical Sciences
    156 schema:name National Institute of Statistical Sciences, Research Triangle Park, NC, USA
    157 rdf:type schema:Organization
    158 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    159 schema:name Department of Statistics and Actuarial Science and The Institute for Improvement in Quality and Productivity, University of Waterloo, Waterloo, Ontario, Canada
    160 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...