Caps and Colouring Steiner Triple Systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-01

AUTHORS

Aiden Bruen, Lucien Haddad, David Wehlau

ABSTRACT

Hill [6] showed that the largest cap in PG(5,3) has cardinality 56. Using this cap it is easy to construct a cap of cardinality 45 in AG(5,3). Here we show that the size of a cap in AG(5,3) is bounded above by 48. We also give an example of three disjoint 45-caps in AG(5,3). Using these two results we are able to prove that the Steiner triple system AG(5,3) is 6-chromatic, and so we exhibit the first specific example of a 6-chromatic Steiner triple system. More... »

PAGES

51-55

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1008293805734

DOI

http://dx.doi.org/10.1023/a:1008293805734

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029940805


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Western University", 
          "id": "https://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Department of Mathematics, University of Western Ontario, London, ON, N6A 5B7, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruen", 
        "givenName": "Aiden", 
        "id": "sg:person.010620072145.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620072145.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics and CS, Royal Military College, P.O. Box 17000, STN Forces, Kingston, ON, K7K 7B4, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haddad", 
        "givenName": "Lucien", 
        "id": "sg:person.010005564673.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005564673.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics and CS, Royal Military College, P.O. Box 17000, STN Forces, Kingston, ON, K7K 7B4, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wehlau", 
        "givenName": "David", 
        "id": "sg:person.011262114207.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262114207.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0097-3165(82)90062-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016049074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(78)90120-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029113423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0062997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040162314", 
          "https://doi.org/10.1007/bfb0062997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0603023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062848748"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-01", 
    "datePublishedReg": "1998-01-01", 
    "description": "Hill [6] showed that the largest cap in PG(5,3) has cardinality 56. Using this cap it is easy to construct a cap of cardinality 45 in AG(5,3). Here we show that the size of a cap in AG(5,3) is bounded above by 48. We also give an example of three disjoint 45-caps in AG(5,3). Using these two results we are able to prove that the Steiner triple system AG(5,3) is 6-chromatic, and so we exhibit the first specific example of a 6-chromatic Steiner triple system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1008293805734", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136552", 
        "issn": [
          "0925-1022", 
          "1573-7586"
        ], 
        "name": "Designs, Codes and Cryptography", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Caps and Colouring Steiner Triple Systems", 
    "pagination": "51-55", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8ea2570137d387517654b063624c8f559ad254ed0e35c81a094b99a1e06b3b42"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1008293805734"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029940805"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1008293805734", 
      "https://app.dimensions.ai/details/publication/pub.1029940805"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1008293805734"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008293805734'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008293805734'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008293805734'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008293805734'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1008293805734 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nc29a3010739d4367b1a30b652306d5f1
4 schema:citation sg:pub.10.1007/bfb0062997
5 https://doi.org/10.1016/0012-365x(78)90120-6
6 https://doi.org/10.1016/0097-3165(82)90062-0
7 https://doi.org/10.1137/0603023
8 schema:datePublished 1998-01
9 schema:datePublishedReg 1998-01-01
10 schema:description Hill [6] showed that the largest cap in PG(5,3) has cardinality 56. Using this cap it is easy to construct a cap of cardinality 45 in AG(5,3). Here we show that the size of a cap in AG(5,3) is bounded above by 48. We also give an example of three disjoint 45-caps in AG(5,3). Using these two results we are able to prove that the Steiner triple system AG(5,3) is 6-chromatic, and so we exhibit the first specific example of a 6-chromatic Steiner triple system.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N21fefe5d550144b584d1446ec2742c71
15 N5985f97f87d146b28b4d7fd1f68d6c62
16 sg:journal.1136552
17 schema:name Caps and Colouring Steiner Triple Systems
18 schema:pagination 51-55
19 schema:productId N3c8f5bd9079f419ea0b7096e101d08cb
20 Na8bb18421e394b0a9679d1ba76a63593
21 Nb55594eae0684aab9d3e46ad1b7b09ee
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029940805
23 https://doi.org/10.1023/a:1008293805734
24 schema:sdDatePublished 2019-04-11T01:04
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Na2bbd443e6a14b96bc068d982a87008e
27 schema:url http://link.springer.com/10.1023/A:1008293805734
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N16f08b3710b944f7b20b973a1a7a4a91 schema:name Department of Mathematics and CS, Royal Military College, P.O. Box 17000, STN Forces, Kingston, ON, K7K 7B4, Canada
32 rdf:type schema:Organization
33 N21fefe5d550144b584d1446ec2742c71 schema:issueNumber 1
34 rdf:type schema:PublicationIssue
35 N3c8f5bd9079f419ea0b7096e101d08cb schema:name doi
36 schema:value 10.1023/a:1008293805734
37 rdf:type schema:PropertyValue
38 N3da0c04f96824bcfa81e3137243cad28 rdf:first sg:person.010005564673.01
39 rdf:rest N9abb495a155d48899c1668b3150f5c6b
40 N5985f97f87d146b28b4d7fd1f68d6c62 schema:volumeNumber 13
41 rdf:type schema:PublicationVolume
42 N6aa6811dbbde484e9418baa59e517175 schema:name Department of Mathematics and CS, Royal Military College, P.O. Box 17000, STN Forces, Kingston, ON, K7K 7B4, Canada
43 rdf:type schema:Organization
44 N9abb495a155d48899c1668b3150f5c6b rdf:first sg:person.011262114207.39
45 rdf:rest rdf:nil
46 Na2bbd443e6a14b96bc068d982a87008e schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Na8bb18421e394b0a9679d1ba76a63593 schema:name dimensions_id
49 schema:value pub.1029940805
50 rdf:type schema:PropertyValue
51 Nb55594eae0684aab9d3e46ad1b7b09ee schema:name readcube_id
52 schema:value 8ea2570137d387517654b063624c8f559ad254ed0e35c81a094b99a1e06b3b42
53 rdf:type schema:PropertyValue
54 Nc29a3010739d4367b1a30b652306d5f1 rdf:first sg:person.010620072145.82
55 rdf:rest N3da0c04f96824bcfa81e3137243cad28
56 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
57 schema:name Biological Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
60 schema:name Biochemistry and Cell Biology
61 rdf:type schema:DefinedTerm
62 sg:journal.1136552 schema:issn 0925-1022
63 1573-7586
64 schema:name Designs, Codes and Cryptography
65 rdf:type schema:Periodical
66 sg:person.010005564673.01 schema:affiliation N6aa6811dbbde484e9418baa59e517175
67 schema:familyName Haddad
68 schema:givenName Lucien
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005564673.01
70 rdf:type schema:Person
71 sg:person.010620072145.82 schema:affiliation https://www.grid.ac/institutes/grid.39381.30
72 schema:familyName Bruen
73 schema:givenName Aiden
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620072145.82
75 rdf:type schema:Person
76 sg:person.011262114207.39 schema:affiliation N16f08b3710b944f7b20b973a1a7a4a91
77 schema:familyName Wehlau
78 schema:givenName David
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262114207.39
80 rdf:type schema:Person
81 sg:pub.10.1007/bfb0062997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040162314
82 https://doi.org/10.1007/bfb0062997
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0012-365x(78)90120-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029113423
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0097-3165(82)90062-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016049074
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1137/0603023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062848748
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.39381.30 schema:alternateName Western University
91 schema:name Department of Mathematics, University of Western Ontario, London, ON, N6A 5B7, Canada
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...