Partitioning Quadrics, Symmetric Group Divisible Designs and Caps View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-02

AUTHORS

Aiden A. Bruen, David L. Wehlau

ABSTRACT

Using partitionings of quadrics we give a geometric construction of certain symmetric group divisible designs. It is shown that some of them at least are self-dual. The designs that we construct here relate to interesting work — some of it very recent — by D. Jungnickel and by E. Moorhouse. In this paper we also give a short proof of an old result of G. Pellegrino concerning the maximum size of a cap in AG(4,3) and its structure. Semi-biplanes make their appearance as part of our construction in the three dimensional case. More... »

PAGES

145-155

References to SciGraph publications

  • 1980-09. A note on square divisible designs in JOURNAL OF GEOMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1008288202894

    DOI

    http://dx.doi.org/10.1023/a:1008288202894

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005645328


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Western University", 
              "id": "https://www.grid.ac/institutes/grid.39381.30", 
              "name": [
                "Department of Mathematics, University of Western Ontario, N6A 3K7, London, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bruen", 
            "givenName": "Aiden A.", 
            "id": "sg:person.010620072145.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620072145.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Queen's University", 
              "id": "https://www.grid.ac/institutes/grid.410356.5", 
              "name": [
                "Department of Mathematics and Computer Science, Royal Military College of Canada, K7K 5L0, Kingston, Ontario, Canada", 
                "Department of Mathematics and Statistics, Queens University, K7L 3N6, Kingston, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wehlau", 
            "givenName": "David L.", 
            "id": "sg:person.011262114207.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262114207.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01922491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000377818", 
              "https://doi.org/10.1007/bf01922491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0195-6698(13)80044-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034080170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cjm-1982-018-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072266851"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-02", 
        "datePublishedReg": "1997-02-01", 
        "description": "Using partitionings of quadrics we give a geometric construction of certain symmetric group divisible designs. It is shown that some of them at least are self-dual. The designs that we construct here relate to interesting work \u2014 some of it very recent \u2014 by D. Jungnickel and by E. Moorhouse. In this paper we also give a short proof of an old result of G. Pellegrino concerning the maximum size of a cap in AG(4,3) and its structure. Semi-biplanes make their appearance as part of our construction in the three dimensional case.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1008288202894", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Partitioning Quadrics, Symmetric Group Divisible Designs and Caps", 
        "pagination": "145-155", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1ae5ee5b371e4c0325571937cf0384e43b3710fc2ced73570f815e9d62e6c513"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1008288202894"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005645328"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1008288202894", 
          "https://app.dimensions.ai/details/publication/pub.1005645328"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000498.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1008288202894"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008288202894'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008288202894'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008288202894'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008288202894'


     

    This table displays all metadata directly associated to this object as RDF triples.

    82 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1008288202894 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nde343933b82e40e99a59162c26704bbc
    4 schema:citation sg:pub.10.1007/bf01922491
    5 https://doi.org/10.1016/s0195-6698(13)80044-3
    6 https://doi.org/10.4153/cjm-1982-018-x
    7 schema:datePublished 1997-02
    8 schema:datePublishedReg 1997-02-01
    9 schema:description Using partitionings of quadrics we give a geometric construction of certain symmetric group divisible designs. It is shown that some of them at least are self-dual. The designs that we construct here relate to interesting work — some of it very recent — by D. Jungnickel and by E. Moorhouse. In this paper we also give a short proof of an old result of G. Pellegrino concerning the maximum size of a cap in AG(4,3) and its structure. Semi-biplanes make their appearance as part of our construction in the three dimensional case.
    10 schema:genre research_article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N091e51d6763148ddafa1f3a6b85fa2e3
    14 N5c690a5535204b7ab57ec8198325a242
    15 sg:journal.1136552
    16 schema:name Partitioning Quadrics, Symmetric Group Divisible Designs and Caps
    17 schema:pagination 145-155
    18 schema:productId N13cb1050bb59477a99add190eb16be3e
    19 N71d2315d18a74efa8ac37107a80ba844
    20 Nedd381009cb449ceb4cd6f235ba2ae44
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005645328
    22 https://doi.org/10.1023/a:1008288202894
    23 schema:sdDatePublished 2019-04-10T23:21
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher N7cd6e55e372c4bc0ab193472d76378d9
    26 schema:url http://link.springer.com/10.1023/A:1008288202894
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N091e51d6763148ddafa1f3a6b85fa2e3 schema:volumeNumber 10
    31 rdf:type schema:PublicationVolume
    32 N13cb1050bb59477a99add190eb16be3e schema:name readcube_id
    33 schema:value 1ae5ee5b371e4c0325571937cf0384e43b3710fc2ced73570f815e9d62e6c513
    34 rdf:type schema:PropertyValue
    35 N5c690a5535204b7ab57ec8198325a242 schema:issueNumber 2
    36 rdf:type schema:PublicationIssue
    37 N71d2315d18a74efa8ac37107a80ba844 schema:name dimensions_id
    38 schema:value pub.1005645328
    39 rdf:type schema:PropertyValue
    40 N7cd6e55e372c4bc0ab193472d76378d9 schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 Naa569ebc9a0f4670b011ef43d03ba8cd rdf:first sg:person.011262114207.39
    43 rdf:rest rdf:nil
    44 Nde343933b82e40e99a59162c26704bbc rdf:first sg:person.010620072145.82
    45 rdf:rest Naa569ebc9a0f4670b011ef43d03ba8cd
    46 Nedd381009cb449ceb4cd6f235ba2ae44 schema:name doi
    47 schema:value 10.1023/a:1008288202894
    48 rdf:type schema:PropertyValue
    49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Mathematical Sciences
    51 rdf:type schema:DefinedTerm
    52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Pure Mathematics
    54 rdf:type schema:DefinedTerm
    55 sg:journal.1136552 schema:issn 0925-1022
    56 1573-7586
    57 schema:name Designs, Codes and Cryptography
    58 rdf:type schema:Periodical
    59 sg:person.010620072145.82 schema:affiliation https://www.grid.ac/institutes/grid.39381.30
    60 schema:familyName Bruen
    61 schema:givenName Aiden A.
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620072145.82
    63 rdf:type schema:Person
    64 sg:person.011262114207.39 schema:affiliation https://www.grid.ac/institutes/grid.410356.5
    65 schema:familyName Wehlau
    66 schema:givenName David L.
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262114207.39
    68 rdf:type schema:Person
    69 sg:pub.10.1007/bf01922491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000377818
    70 https://doi.org/10.1007/bf01922491
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1016/s0195-6698(13)80044-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080170
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.4153/cjm-1982-018-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1072266851
    75 rdf:type schema:CreativeWork
    76 https://www.grid.ac/institutes/grid.39381.30 schema:alternateName Western University
    77 schema:name Department of Mathematics, University of Western Ontario, N6A 3K7, London, Ontario, Canada
    78 rdf:type schema:Organization
    79 https://www.grid.ac/institutes/grid.410356.5 schema:alternateName Queen's University
    80 schema:name Department of Mathematics and Computer Science, Royal Military College of Canada, K7K 5L0, Kingston, Ontario, Canada
    81 Department of Mathematics and Statistics, Queens University, K7L 3N6, Kingston, Ontario, Canada
    82 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...