Discrete Logarithm Based Cryptosystems in Quadratic Function Fields of Characteristic 2 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-05

AUTHORS

Volker Müller, Scott Vanstone, Robert Zuccherato

ABSTRACT

We present a key exchange scheme similar to that of Diffie and Hellman using the infrastructure of quadratic function fields of even characteristic. This is a modification of the results of Scheidler, Stein and Williams who used quadratic function fields of odd characteristic. We also extend these results to give a digital signature scheme similar to that of ElGamal. These schemes are possible in this structure even though it is not a group. Finally we examine the security of such systems, and give a possible attack based on Pohlig and Hellman's attack on discrete logarithms in finite groups. More... »

PAGES

159-178

References to SciGraph publications

  • 1996-01. Key-exchange in real quadratic congruence function fields in DESIGNS, CODES AND CRYPTOGRAPHY
  • 1994-09. A key-exchange protocol using real quadratic fields in JOURNAL OF CRYPTOLOGY
  • 1931-12. Analytische Zahlentheorie in Körpern der Charakteristikp in MATHEMATISCHE ZEITSCHRIFT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1008240113843

    DOI

    http://dx.doi.org/10.1023/a:1008240113843

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048389311


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fachbereich 20 - Informatik, Technische Hochschule Darmstadt, Alexanderstr. 10, 64283, Darmstadt, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Fachbereich 20 - Informatik, Technische Hochschule Darmstadt, Alexanderstr. 10, 64283, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00fcller", 
            "givenName": "Volker", 
            "id": "sg:person.010556630476.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010556630476.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vanstone", 
            "givenName": "Scott", 
            "id": "sg:person.010344544767.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Entrust Technologies, 750 Heron Road, Suite E08, K1V 1A7, Ottawa, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Entrust Technologies, 750 Heron Road, Suite E08, K1V 1A7, Ottawa, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zuccherato", 
            "givenName": "Robert", 
            "id": "sg:person.014530463327.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014530463327.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00125081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021297564", 
              "https://doi.org/10.1007/bf00125081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02318548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017412502", 
              "https://doi.org/10.1007/bf02318548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01174341", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010439573", 
              "https://doi.org/10.1007/bf01174341"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-05", 
        "datePublishedReg": "1998-05-01", 
        "description": "We present a key exchange scheme similar to that of Diffie and Hellman using the infrastructure of quadratic function fields of even characteristic. This is a modification of the results of Scheidler, Stein and Williams who used quadratic function fields of odd characteristic. We also extend these results to give a digital signature scheme similar to that of ElGamal. These schemes are possible in this structure even though it is not a group. Finally we examine the security of such systems, and give a possible attack based on Pohlig and Hellman's attack on discrete logarithms in finite groups.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1008240113843", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "keywords": [
          "discrete logarithm", 
          "digital signature scheme", 
          "key exchange scheme", 
          "quadratic function fields", 
          "possible attacks", 
          "signature scheme", 
          "exchange scheme", 
          "such systems", 
          "attacks", 
          "scheme", 
          "ElGamal", 
          "cryptosystem", 
          "Diffie", 
          "security", 
          "Hellman", 
          "infrastructure", 
          "function fields", 
          "characteristic 2", 
          "system", 
          "field", 
          "odd characteristic", 
          "Scheidler", 
          "results", 
          "finite group", 
          "logarithm", 
          "characteristics", 
          "structure", 
          "modification", 
          "Stein", 
          "group", 
          "Williams"
        ], 
        "name": "Discrete Logarithm Based Cryptosystems in Quadratic Function Fields of Characteristic 2", 
        "pagination": "159-178", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048389311"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1008240113843"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1008240113843", 
          "https://app.dimensions.ai/details/publication/pub.1048389311"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_260.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1008240113843"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008240113843'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008240113843'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008240113843'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008240113843'


     

    This table displays all metadata directly associated to this object as RDF triples.

    120 TRIPLES      21 PREDICATES      59 URIs      48 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1008240113843 schema:about anzsrc-for:08
    2 anzsrc-for:0804
    3 schema:author N1cce9322b00c43c8a4d7b7b60e190595
    4 schema:citation sg:pub.10.1007/bf00125081
    5 sg:pub.10.1007/bf01174341
    6 sg:pub.10.1007/bf02318548
    7 schema:datePublished 1998-05
    8 schema:datePublishedReg 1998-05-01
    9 schema:description We present a key exchange scheme similar to that of Diffie and Hellman using the infrastructure of quadratic function fields of even characteristic. This is a modification of the results of Scheidler, Stein and Williams who used quadratic function fields of odd characteristic. We also extend these results to give a digital signature scheme similar to that of ElGamal. These schemes are possible in this structure even though it is not a group. Finally we examine the security of such systems, and give a possible attack based on Pohlig and Hellman's attack on discrete logarithms in finite groups.
    10 schema:genre article
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N6209020c0d1745b28075c717be276edb
    13 N895bb89bd4724619b84da4896ee07b81
    14 sg:journal.1136552
    15 schema:keywords Diffie
    16 ElGamal
    17 Hellman
    18 Scheidler
    19 Stein
    20 Williams
    21 attacks
    22 characteristic 2
    23 characteristics
    24 cryptosystem
    25 digital signature scheme
    26 discrete logarithm
    27 exchange scheme
    28 field
    29 finite group
    30 function fields
    31 group
    32 infrastructure
    33 key exchange scheme
    34 logarithm
    35 modification
    36 odd characteristic
    37 possible attacks
    38 quadratic function fields
    39 results
    40 scheme
    41 security
    42 signature scheme
    43 structure
    44 such systems
    45 system
    46 schema:name Discrete Logarithm Based Cryptosystems in Quadratic Function Fields of Characteristic 2
    47 schema:pagination 159-178
    48 schema:productId N61794ce46e3942d48d2d718cd8c27552
    49 Ne1a15e0e5ef24b608ead7b55b64d1ee7
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048389311
    51 https://doi.org/10.1023/a:1008240113843
    52 schema:sdDatePublished 2022-11-24T20:48
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N81da5e6165274fb094b7fac102726abc
    55 schema:url https://doi.org/10.1023/a:1008240113843
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N0af803389eac411eac41bb324a7c5f6b rdf:first sg:person.010344544767.07
    60 rdf:rest Nc86824c3df5a462c85f7c9b656b778bd
    61 N1cce9322b00c43c8a4d7b7b60e190595 rdf:first sg:person.010556630476.29
    62 rdf:rest N0af803389eac411eac41bb324a7c5f6b
    63 N61794ce46e3942d48d2d718cd8c27552 schema:name doi
    64 schema:value 10.1023/a:1008240113843
    65 rdf:type schema:PropertyValue
    66 N6209020c0d1745b28075c717be276edb schema:issueNumber 2
    67 rdf:type schema:PublicationIssue
    68 N81da5e6165274fb094b7fac102726abc schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 N895bb89bd4724619b84da4896ee07b81 schema:volumeNumber 14
    71 rdf:type schema:PublicationVolume
    72 Nc86824c3df5a462c85f7c9b656b778bd rdf:first sg:person.014530463327.84
    73 rdf:rest rdf:nil
    74 Ne1a15e0e5ef24b608ead7b55b64d1ee7 schema:name dimensions_id
    75 schema:value pub.1048389311
    76 rdf:type schema:PropertyValue
    77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Information and Computing Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Data Format
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1136552 schema:issn 0925-1022
    84 1573-7586
    85 schema:name Designs, Codes and Cryptography
    86 schema:publisher Springer Nature
    87 rdf:type schema:Periodical
    88 sg:person.010344544767.07 schema:affiliation grid-institutes:grid.46078.3d
    89 schema:familyName Vanstone
    90 schema:givenName Scott
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07
    92 rdf:type schema:Person
    93 sg:person.010556630476.29 schema:affiliation grid-institutes:grid.6546.1
    94 schema:familyName Müller
    95 schema:givenName Volker
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010556630476.29
    97 rdf:type schema:Person
    98 sg:person.014530463327.84 schema:affiliation grid-institutes:None
    99 schema:familyName Zuccherato
    100 schema:givenName Robert
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014530463327.84
    102 rdf:type schema:Person
    103 sg:pub.10.1007/bf00125081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021297564
    104 https://doi.org/10.1007/bf00125081
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/bf01174341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010439573
    107 https://doi.org/10.1007/bf01174341
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/bf02318548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017412502
    110 https://doi.org/10.1007/bf02318548
    111 rdf:type schema:CreativeWork
    112 grid-institutes:None schema:alternateName Entrust Technologies, 750 Heron Road, Suite E08, K1V 1A7, Ottawa, Ontario, Canada
    113 schema:name Entrust Technologies, 750 Heron Road, Suite E08, K1V 1A7, Ottawa, Ontario, Canada
    114 rdf:type schema:Organization
    115 grid-institutes:grid.46078.3d schema:alternateName Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    116 schema:name Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    117 rdf:type schema:Organization
    118 grid-institutes:grid.6546.1 schema:alternateName Fachbereich 20 - Informatik, Technische Hochschule Darmstadt, Alexanderstr. 10, 64283, Darmstadt, Germany
    119 schema:name Fachbereich 20 - Informatik, Technische Hochschule Darmstadt, Alexanderstr. 10, 64283, Darmstadt, Germany
    120 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...