Bayesian Models for Keyhole Plan Recognition in an Adventure Game View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-03

AUTHORS

David W. Albrecht, Ingrid Zukerman, An E. Nicholson

ABSTRACT

We present an approach to keyhole plan recognition which uses a dynamic belief (Bayesian) network to represent features of the domain that are needed to identify users' plans and goals. The application domain is a Multi-User Dungeon adventure game with thousands of possible actions and locations. We propose several network structures which represent the relations in the domain to varying extents, and compare their predictive power for predicting a user's current goal, next action and next location. The conditional probability distributions for each network are learned during a training phase, which dynamically builds these probabilities from observations of user behaviour. This approach allows the use of incomplete, sparse and noisy data during both training and testing. We then apply simple abstraction and learning techniques in order to speed up the performance of the most promising dynamic belief networks without a significant change in the accuracy of goal predictions. Our experimental results in the application domain show a high degree of predictive accuracy. This indicates that dynamic belief networks in general show promise for predicting a variety of behaviours in domains which have similar features to those of our domain, while reduced models, obtained by means of learning and abstraction, show promise for efficient goal prediction in such domains. More... »

PAGES

5-47

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1008238218679

DOI

http://dx.doi.org/10.1023/a:1008238218679

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026360023


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "Monash University Clayton, 3168, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Albrecht", 
        "givenName": "David W.", 
        "id": "sg:person.014461770507.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014461770507.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "Monash University Clayton, 3168, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zukerman", 
        "givenName": "Ingrid", 
        "id": "sg:person.07664067336.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07664067336.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "Monash University Clayton, 3168, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicholson", 
        "givenName": "An E.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0004-3702(80)90042-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005287009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(80)90042-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005287009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-53504-7_63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010756139", 
          "https://doi.org/10.1007/3-540-53504-7_63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01126111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013075846", 
          "https://doi.org/10.1007/bf01126111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01126111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013075846", 
          "https://doi.org/10.1007/bf01126111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12405-5_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016127667", 
          "https://doi.org/10.1007/978-3-662-12405-5_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00141048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022950127", 
          "https://doi.org/10.1007/bf00141048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00141048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022950127", 
          "https://doi.org/10.1007/bf00141048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/11.2.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029379316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(93)90060-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033141491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(93)90060-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033141491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4832-8287-9.50010-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035580784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-2670-7_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046700920", 
          "https://doi.org/10.1007/978-3-7091-2670-7_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15516709cog1102_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051844070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15516709cog1102_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051844070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.328910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061121980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/69.494161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061213478"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-03", 
    "datePublishedReg": "1998-03-01", 
    "description": "We present an approach to keyhole plan recognition which uses a dynamic belief (Bayesian) network to represent features of the domain that are needed to identify users' plans and goals. The application domain is a Multi-User Dungeon adventure game with thousands of possible actions and locations. We propose several network structures which represent the relations in the domain to varying extents, and compare their predictive power for predicting a user's current goal, next action and next location. The conditional probability distributions for each network are learned during a training phase, which dynamically builds these probabilities from observations of user behaviour. This approach allows the use of incomplete, sparse and noisy data during both training and testing. We then apply simple abstraction and learning techniques in order to speed up the performance of the most promising dynamic belief networks without a significant change in the accuracy of goal predictions. Our experimental results in the application domain show a high degree of predictive accuracy. This indicates that dynamic belief networks in general show promise for predicting a variety of behaviours in domains which have similar features to those of our domain, while reduced models, obtained by means of learning and abstraction, show promise for efficient goal prediction in such domains.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1008238218679", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1031131", 
        "issn": [
          "0924-1868", 
          "1573-1391"
        ], 
        "name": "User Modeling and User-Adapted Interaction", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Bayesian Models for Keyhole Plan Recognition in an Adventure Game", 
    "pagination": "5-47", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7d9402f2f37f9296b480ae5a48a3c1f48b7b3977c7e335d985be2d8a33038906"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1008238218679"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026360023"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1008238218679", 
      "https://app.dimensions.ai/details/publication/pub.1026360023"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1008238218679"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008238218679'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008238218679'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008238218679'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008238218679'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1008238218679 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N3dccf246f0dd440886141381c7dfae2e
4 schema:citation sg:pub.10.1007/3-540-53504-7_63
5 sg:pub.10.1007/978-3-662-12405-5_15
6 sg:pub.10.1007/978-3-7091-2670-7_24
7 sg:pub.10.1007/bf00141048
8 sg:pub.10.1007/bf01126111
9 https://doi.org/10.1016/0004-3702(80)90042-9
10 https://doi.org/10.1016/0004-3702(93)90060-o
11 https://doi.org/10.1016/b978-1-4832-8287-9.50010-4
12 https://doi.org/10.1093/comjnl/11.2.185
13 https://doi.org/10.1109/21.328910
14 https://doi.org/10.1109/69.494161
15 https://doi.org/10.1207/s15516709cog1102_4
16 schema:datePublished 1998-03
17 schema:datePublishedReg 1998-03-01
18 schema:description We present an approach to keyhole plan recognition which uses a dynamic belief (Bayesian) network to represent features of the domain that are needed to identify users' plans and goals. The application domain is a Multi-User Dungeon adventure game with thousands of possible actions and locations. We propose several network structures which represent the relations in the domain to varying extents, and compare their predictive power for predicting a user's current goal, next action and next location. The conditional probability distributions for each network are learned during a training phase, which dynamically builds these probabilities from observations of user behaviour. This approach allows the use of incomplete, sparse and noisy data during both training and testing. We then apply simple abstraction and learning techniques in order to speed up the performance of the most promising dynamic belief networks without a significant change in the accuracy of goal predictions. Our experimental results in the application domain show a high degree of predictive accuracy. This indicates that dynamic belief networks in general show promise for predicting a variety of behaviours in domains which have similar features to those of our domain, while reduced models, obtained by means of learning and abstraction, show promise for efficient goal prediction in such domains.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N57372623df774704b645b4b4ab7b0618
23 Nb9d3adea58f94bb6ab143f19511d3e19
24 sg:journal.1031131
25 schema:name Bayesian Models for Keyhole Plan Recognition in an Adventure Game
26 schema:pagination 5-47
27 schema:productId N010f1449b34541e58fc912f786c56247
28 N1fb4398ea817488fad1c55379a61b5a5
29 N578da4f547524089b2e35844648d38cf
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026360023
31 https://doi.org/10.1023/a:1008238218679
32 schema:sdDatePublished 2019-04-10T20:44
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N2119a45e3cbd44c6a463295784fe5b7d
35 schema:url http://link.springer.com/10.1023/A:1008238218679
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N010f1449b34541e58fc912f786c56247 schema:name doi
40 schema:value 10.1023/a:1008238218679
41 rdf:type schema:PropertyValue
42 N1fb4398ea817488fad1c55379a61b5a5 schema:name readcube_id
43 schema:value 7d9402f2f37f9296b480ae5a48a3c1f48b7b3977c7e335d985be2d8a33038906
44 rdf:type schema:PropertyValue
45 N2119a45e3cbd44c6a463295784fe5b7d schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N3dccf246f0dd440886141381c7dfae2e rdf:first sg:person.014461770507.75
48 rdf:rest N70e2fa9f8c3f40eaa64181362a53b917
49 N4617a43d03f04826a9eb6131fc092ca3 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
50 schema:familyName Nicholson
51 schema:givenName An E.
52 rdf:type schema:Person
53 N57372623df774704b645b4b4ab7b0618 schema:volumeNumber 8
54 rdf:type schema:PublicationVolume
55 N578da4f547524089b2e35844648d38cf schema:name dimensions_id
56 schema:value pub.1026360023
57 rdf:type schema:PropertyValue
58 N68ed765659a64697a8b5750d6790579b rdf:first N4617a43d03f04826a9eb6131fc092ca3
59 rdf:rest rdf:nil
60 N70e2fa9f8c3f40eaa64181362a53b917 rdf:first sg:person.07664067336.47
61 rdf:rest N68ed765659a64697a8b5750d6790579b
62 Nb9d3adea58f94bb6ab143f19511d3e19 schema:issueNumber 1-2
63 rdf:type schema:PublicationIssue
64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information and Computing Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information Systems
69 rdf:type schema:DefinedTerm
70 sg:journal.1031131 schema:issn 0924-1868
71 1573-1391
72 schema:name User Modeling and User-Adapted Interaction
73 rdf:type schema:Periodical
74 sg:person.014461770507.75 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
75 schema:familyName Albrecht
76 schema:givenName David W.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014461770507.75
78 rdf:type schema:Person
79 sg:person.07664067336.47 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
80 schema:familyName Zukerman
81 schema:givenName Ingrid
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07664067336.47
83 rdf:type schema:Person
84 sg:pub.10.1007/3-540-53504-7_63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010756139
85 https://doi.org/10.1007/3-540-53504-7_63
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-3-662-12405-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016127667
88 https://doi.org/10.1007/978-3-662-12405-5_15
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-3-7091-2670-7_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046700920
91 https://doi.org/10.1007/978-3-7091-2670-7_24
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf00141048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022950127
94 https://doi.org/10.1007/bf00141048
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf01126111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013075846
97 https://doi.org/10.1007/bf01126111
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0004-3702(80)90042-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005287009
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0004-3702(93)90060-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1033141491
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/b978-1-4832-8287-9.50010-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035580784
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1093/comjnl/11.2.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029379316
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/21.328910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121980
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/69.494161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061213478
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1207/s15516709cog1102_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051844070
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.1002.3 schema:alternateName Monash University
114 schema:name Monash University Clayton, 3168, Victoria, Australia
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...