Near Optimal Robust Path Planning for Mobile Robots: the Viscous Fluid Method with Friction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-01

AUTHORS

C. Louste, A. Liegeois

ABSTRACT

A new approach is proposed to robot path planning that consists of using the viscous fluid equations including external forces. Unlike the majority of potential field techniques, the method is able to cope not only with 2-dimensional binary environments made of obstacles and free space, but also with so-called weighted regions, as well as uneven natural terrain where slope and ground characteristics influence the robot performance. It shows how the viscosity coefficient can be used to control the corridors of navigation, and how the external forces acting on the fluid particles can model the forces due to gravity and to friction between the ground and the vehicle. The planner automatically constructs several routes of equivalent costs, that makes the solutions more robust than those obtained by the search of optimal paths, by allowing reactivity in case of an unexpected local disturbance. Comparisons with the scent diffusion method for a binary universe and with a genetic algorithm for a real natural terrain are presented. More... »

PAGES

99-112

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1008102230551

DOI

http://dx.doi.org/10.1023/a:1008102230551

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033229969


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "LIRMM-UMR 5506 CNRS /, University Montpellier II, 161 rue Ada, 34392, Montpellier Cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Louste", 
        "givenName": "C.", 
        "id": "sg:person.011272450077.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011272450077.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "LIRMM-UMR 5506 CNRS /, University Montpellier II, 161 rue Ada, 34392, Montpellier Cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liegeois", 
        "givenName": "A.", 
        "id": "sg:person.011406105515.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406105515.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-011-2526-0_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015587544", 
          "https://doi.org/10.1007/978-94-011-2526-0_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-2526-0_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015587544", 
          "https://doi.org/10.1007/978-94-011-2526-0_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/359156.359164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020616080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/027836498600500106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025658127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/027836498600500106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025658127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-2526-0_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053200352", 
          "https://doi.org/10.1007/978-94-011-2526-0_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-2526-0_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053200352", 
          "https://doi.org/10.1007/978-94-011-2526-0_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.148426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061121438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1987.1088038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086177008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1988.12325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086193717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1994.351000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095227364"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-01", 
    "datePublishedReg": "2000-01-01", 
    "description": "A new approach is proposed to robot path planning that consists of using the viscous fluid equations including external forces. Unlike the majority of potential field techniques, the method is able to cope not only with 2-dimensional binary environments made of obstacles and free space, but also with so-called weighted regions, as well as uneven natural terrain where slope and ground characteristics influence the robot performance. It shows how the viscosity coefficient can be used to control the corridors of navigation, and how the external forces acting on the fluid particles can model the forces due to gravity and to friction between the ground and the vehicle. The planner automatically constructs several routes of equivalent costs, that makes the solutions more robust than those obtained by the search of optimal paths, by allowing reactivity in case of an unexpected local disturbance. Comparisons with the scent diffusion method for a binary universe and with a genetic algorithm for a real natural terrain are presented.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1008102230551", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135942", 
        "issn": [
          "0921-0296", 
          "1573-0409"
        ], 
        "name": "Journal of Intelligent & Robotic Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Near Optimal Robust Path Planning for Mobile Robots: the Viscous Fluid Method with Friction", 
    "pagination": "99-112", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9e4d5dec8638f9437c433fcbde0ebdee29bdc8ddb53a1e48cfd2586580bb120f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1008102230551"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033229969"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1008102230551", 
      "https://app.dimensions.ai/details/publication/pub.1033229969"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1008102230551"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008102230551'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008102230551'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008102230551'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008102230551'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1008102230551 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nec20c177e39b471f98d7ee8e5ba6e25b
4 schema:citation sg:pub.10.1007/978-94-011-2526-0_24
5 sg:pub.10.1007/978-94-011-2526-0_34
6 https://doi.org/10.1109/21.148426
7 https://doi.org/10.1109/robot.1987.1088038
8 https://doi.org/10.1109/robot.1988.12325
9 https://doi.org/10.1109/robot.1994.351000
10 https://doi.org/10.1145/359156.359164
11 https://doi.org/10.1177/027836498600500106
12 schema:datePublished 2000-01
13 schema:datePublishedReg 2000-01-01
14 schema:description A new approach is proposed to robot path planning that consists of using the viscous fluid equations including external forces. Unlike the majority of potential field techniques, the method is able to cope not only with 2-dimensional binary environments made of obstacles and free space, but also with so-called weighted regions, as well as uneven natural terrain where slope and ground characteristics influence the robot performance. It shows how the viscosity coefficient can be used to control the corridors of navigation, and how the external forces acting on the fluid particles can model the forces due to gravity and to friction between the ground and the vehicle. The planner automatically constructs several routes of equivalent costs, that makes the solutions more robust than those obtained by the search of optimal paths, by allowing reactivity in case of an unexpected local disturbance. Comparisons with the scent diffusion method for a binary universe and with a genetic algorithm for a real natural terrain are presented.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N05fa83a071f348899b18b229e20198d1
19 N57379f25a6034024b1fe8f61fe3d2e40
20 sg:journal.1135942
21 schema:name Near Optimal Robust Path Planning for Mobile Robots: the Viscous Fluid Method with Friction
22 schema:pagination 99-112
23 schema:productId N91d8370c0811486197a852124fb1456a
24 Na551f74f9412448a8a1ca83355a49ac9
25 Nc29c8613586a4c54997f5d2ca8183039
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033229969
27 https://doi.org/10.1023/a:1008102230551
28 schema:sdDatePublished 2019-04-10T17:24
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N5a48ff8124cc4b7089bbd1fc1bb1ba0f
31 schema:url http://link.springer.com/10.1023/A:1008102230551
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N05fa83a071f348899b18b229e20198d1 schema:issueNumber 1-2
36 rdf:type schema:PublicationIssue
37 N57379f25a6034024b1fe8f61fe3d2e40 schema:volumeNumber 27
38 rdf:type schema:PublicationVolume
39 N5a48ff8124cc4b7089bbd1fc1bb1ba0f schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N91d8370c0811486197a852124fb1456a schema:name readcube_id
42 schema:value 9e4d5dec8638f9437c433fcbde0ebdee29bdc8ddb53a1e48cfd2586580bb120f
43 rdf:type schema:PropertyValue
44 Na2b315e07ee14af7a0df673b4ce1d102 rdf:first sg:person.011406105515.78
45 rdf:rest rdf:nil
46 Na551f74f9412448a8a1ca83355a49ac9 schema:name dimensions_id
47 schema:value pub.1033229969
48 rdf:type schema:PropertyValue
49 Nc29c8613586a4c54997f5d2ca8183039 schema:name doi
50 schema:value 10.1023/a:1008102230551
51 rdf:type schema:PropertyValue
52 Nec20c177e39b471f98d7ee8e5ba6e25b rdf:first sg:person.011272450077.55
53 rdf:rest Na2b315e07ee14af7a0df673b4ce1d102
54 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
55 schema:name Information and Computing Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
58 schema:name Artificial Intelligence and Image Processing
59 rdf:type schema:DefinedTerm
60 sg:journal.1135942 schema:issn 0921-0296
61 1573-0409
62 schema:name Journal of Intelligent & Robotic Systems
63 rdf:type schema:Periodical
64 sg:person.011272450077.55 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
65 schema:familyName Louste
66 schema:givenName C.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011272450077.55
68 rdf:type schema:Person
69 sg:person.011406105515.78 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
70 schema:familyName Liegeois
71 schema:givenName A.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406105515.78
73 rdf:type schema:Person
74 sg:pub.10.1007/978-94-011-2526-0_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015587544
75 https://doi.org/10.1007/978-94-011-2526-0_24
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/978-94-011-2526-0_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053200352
78 https://doi.org/10.1007/978-94-011-2526-0_34
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1109/21.148426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121438
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1109/robot.1987.1088038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086177008
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1109/robot.1988.12325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086193717
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1109/robot.1994.351000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095227364
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1145/359156.359164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020616080
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1177/027836498600500106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025658127
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.121334.6 schema:alternateName University of Montpellier
93 schema:name LIRMM-UMR 5506 CNRS /, University Montpellier II, 161 rue Ada, 34392, Montpellier Cedex 5, France
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...