Bidirectional Reflection Distribution Function of Thoroughly Pitted Surfaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-04

AUTHORS

Jan J. Koenderink, Andrea J. Van Doorn, Kristin J. Dana, Shree Nayar

ABSTRACT

We derive the BRDF (Bidirectional Reflection Distribution Function) at the mega scale of opaque surfaces that are rough on the macro and micro scale. The roughness at the micro scale is modeled as a uniform, isotropically scattering, Lambertian surface. At the macro scale the roughness is modeled by way of a distribution of spherical concavities. These pits influence the BRDF via vignetting, cast shadow, interreflection and interposition, causing it to differ markedly from Lambertian. Pitted surfaces show strong backward scattering (so called “opposition effect”). When we assume that the macro scale can be resolved, the radiance histogram and the spatial structure of the textons of the textured surface (at the mega scale) can be calculated. This is the main advantage of the model over previous ones: One can do exact (numerical) calculations for a surface geometry that is physically realizable. More... »

PAGES

129-144

References to SciGraph publications

  • 1996. Bidirectional reflection distribution function expressed in terms of surface scattering modes in COMPUTER VISION — ECCV '96
  • 1924-12. Zur Berechnung der Beleuchtungsstärke in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 1995-04. Generalization of the Lambertian model and implications for machine vision in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1008061730969

    DOI

    http://dx.doi.org/10.1023/a:1008061730969

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042600859


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Buys Ballot Laboratory, Helmholtz Instituut, Universiteit Utrecht, Princetonplein 5, 3584CC, Utrecht, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.5477.1", 
              "name": [
                "Buys Ballot Laboratory, Helmholtz Instituut, Universiteit Utrecht, Princetonplein 5, 3584CC, Utrecht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koenderink", 
            "givenName": "Jan J.", 
            "id": "sg:person.01025667406.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025667406.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Buys Ballot Laboratory, Helmholtz Instituut, Universiteit Utrecht, Princetonplein 5, 3584CC, Utrecht, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.5477.1", 
              "name": [
                "Buys Ballot Laboratory, Helmholtz Instituut, Universiteit Utrecht, Princetonplein 5, 3584CC, Utrecht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Doorn", 
            "givenName": "Andrea J.", 
            "id": "sg:person.01033643477.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033643477.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, Columbia University, 10027, New York, NY", 
              "id": "http://www.grid.ac/institutes/grid.21729.3f", 
              "name": [
                "Department of Computer Science, Columbia University, 10027, New York, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dana", 
            "givenName": "Kristin J.", 
            "id": "sg:person.01042344274.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042344274.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, Columbia University, 10027, New York, NY", 
              "id": "http://www.grid.ac/institutes/grid.21729.3f", 
              "name": [
                "Department of Computer Science, Columbia University, 10027, New York, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nayar", 
            "givenName": "Shree", 
            "id": "sg:person.0640261263.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640261263.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01679684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004320587", 
              "https://doi.org/10.1007/bf01679684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-61123-1_125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040860226", 
              "https://doi.org/10.1007/3-540-61123-1_125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01327170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015622987", 
              "https://doi.org/10.1007/bf01327170"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-04", 
        "datePublishedReg": "1999-04-01", 
        "description": "We derive the BRDF (Bidirectional Reflection Distribution Function) at the mega scale of opaque surfaces that are rough on the macro and micro scale. The roughness at the micro scale is modeled as a uniform, isotropically scattering, Lambertian surface. At the macro scale the roughness is modeled by way of a distribution of spherical concavities. These pits influence the BRDF via vignetting, cast shadow, interreflection and interposition, causing it to differ markedly from Lambertian. Pitted surfaces show strong backward scattering (so called \u201copposition effect\u201d). When we assume that the macro scale can be resolved, the radiance histogram and the spatial structure of the textons of the textured surface (at the mega scale) can be calculated. This is the main advantage of the model over previous ones: One can do exact (numerical) calculations for a surface geometry that is physically realizable.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1008061730969", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1032807", 
            "issn": [
              "0920-5691", 
              "1573-1405"
            ], 
            "name": "International Journal of Computer Vision", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "keywords": [
          "micro scale", 
          "macro scale", 
          "pitted surface", 
          "bidirectional reflection distribution function", 
          "reflection distribution function", 
          "mega scale", 
          "surface geometry", 
          "opaque surfaces", 
          "roughness", 
          "surface", 
          "main advantage", 
          "radiance histograms", 
          "Lambertian surface", 
          "strong backward scattering", 
          "distribution function", 
          "BRDF", 
          "spatial structure", 
          "uniform", 
          "geometry", 
          "pits", 
          "exact calculation", 
          "cast shadows", 
          "scale", 
          "Lambertian", 
          "previous ones", 
          "advantages", 
          "structure", 
          "calculations", 
          "distribution", 
          "model", 
          "backward scattering", 
          "interreflections", 
          "scattering", 
          "one", 
          "histogram", 
          "concavity", 
          "shadow", 
          "way", 
          "function", 
          "textons", 
          "interposition"
        ], 
        "name": "Bidirectional Reflection Distribution Function of Thoroughly Pitted Surfaces", 
        "pagination": "129-144", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042600859"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1008061730969"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1008061730969", 
          "https://app.dimensions.ai/details/publication/pub.1042600859"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_322.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1008061730969"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008061730969'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008061730969'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008061730969'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008061730969'


     

    This table displays all metadata directly associated to this object as RDF triples.

    134 TRIPLES      21 PREDICATES      69 URIs      58 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1008061730969 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N0fdd2453782343ea9ccdb475020e2fbc
    4 schema:citation sg:pub.10.1007/3-540-61123-1_125
    5 sg:pub.10.1007/bf01327170
    6 sg:pub.10.1007/bf01679684
    7 schema:datePublished 1999-04
    8 schema:datePublishedReg 1999-04-01
    9 schema:description We derive the BRDF (Bidirectional Reflection Distribution Function) at the mega scale of opaque surfaces that are rough on the macro and micro scale. The roughness at the micro scale is modeled as a uniform, isotropically scattering, Lambertian surface. At the macro scale the roughness is modeled by way of a distribution of spherical concavities. These pits influence the BRDF via vignetting, cast shadow, interreflection and interposition, causing it to differ markedly from Lambertian. Pitted surfaces show strong backward scattering (so called “opposition effect”). When we assume that the macro scale can be resolved, the radiance histogram and the spatial structure of the textons of the textured surface (at the mega scale) can be calculated. This is the main advantage of the model over previous ones: One can do exact (numerical) calculations for a surface geometry that is physically realizable.
    10 schema:genre article
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N67e7b1dacf464ae88c343ccab2725c2f
    13 Na369e4810c5140fa80323c70e1f76dae
    14 sg:journal.1032807
    15 schema:keywords BRDF
    16 Lambertian
    17 Lambertian surface
    18 advantages
    19 backward scattering
    20 bidirectional reflection distribution function
    21 calculations
    22 cast shadows
    23 concavity
    24 distribution
    25 distribution function
    26 exact calculation
    27 function
    28 geometry
    29 histogram
    30 interposition
    31 interreflections
    32 macro scale
    33 main advantage
    34 mega scale
    35 micro scale
    36 model
    37 one
    38 opaque surfaces
    39 pits
    40 pitted surface
    41 previous ones
    42 radiance histograms
    43 reflection distribution function
    44 roughness
    45 scale
    46 scattering
    47 shadow
    48 spatial structure
    49 strong backward scattering
    50 structure
    51 surface
    52 surface geometry
    53 textons
    54 uniform
    55 way
    56 schema:name Bidirectional Reflection Distribution Function of Thoroughly Pitted Surfaces
    57 schema:pagination 129-144
    58 schema:productId N09cb3c5d8003480980eee641e8b379fc
    59 N9b47cf2af26944078dc074a136b02863
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042600859
    61 https://doi.org/10.1023/a:1008061730969
    62 schema:sdDatePublished 2022-09-02T15:48
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher N53c5073d30d244a08aa557be82d91952
    65 schema:url https://doi.org/10.1023/a:1008061730969
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N09cb3c5d8003480980eee641e8b379fc schema:name dimensions_id
    70 schema:value pub.1042600859
    71 rdf:type schema:PropertyValue
    72 N0fdd2453782343ea9ccdb475020e2fbc rdf:first sg:person.01025667406.88
    73 rdf:rest Nd0cfe8efe511464da2462fb4306eeb56
    74 N3c7d37f5837d4e71848db121a1f83c8d rdf:first sg:person.0640261263.22
    75 rdf:rest rdf:nil
    76 N53c5073d30d244a08aa557be82d91952 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 N67e7b1dacf464ae88c343ccab2725c2f schema:issueNumber 2-3
    79 rdf:type schema:PublicationIssue
    80 N9b47cf2af26944078dc074a136b02863 schema:name doi
    81 schema:value 10.1023/a:1008061730969
    82 rdf:type schema:PropertyValue
    83 Na369e4810c5140fa80323c70e1f76dae schema:volumeNumber 31
    84 rdf:type schema:PublicationVolume
    85 Nd0cfe8efe511464da2462fb4306eeb56 rdf:first sg:person.01033643477.59
    86 rdf:rest Nd9a463b2d6194476954767052cb89160
    87 Nd9a463b2d6194476954767052cb89160 rdf:first sg:person.01042344274.14
    88 rdf:rest N3c7d37f5837d4e71848db121a1f83c8d
    89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Information and Computing Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Artificial Intelligence and Image Processing
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1032807 schema:issn 0920-5691
    96 1573-1405
    97 schema:name International Journal of Computer Vision
    98 schema:publisher Springer Nature
    99 rdf:type schema:Periodical
    100 sg:person.01025667406.88 schema:affiliation grid-institutes:grid.5477.1
    101 schema:familyName Koenderink
    102 schema:givenName Jan J.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025667406.88
    104 rdf:type schema:Person
    105 sg:person.01033643477.59 schema:affiliation grid-institutes:grid.5477.1
    106 schema:familyName Van Doorn
    107 schema:givenName Andrea J.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033643477.59
    109 rdf:type schema:Person
    110 sg:person.01042344274.14 schema:affiliation grid-institutes:grid.21729.3f
    111 schema:familyName Dana
    112 schema:givenName Kristin J.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042344274.14
    114 rdf:type schema:Person
    115 sg:person.0640261263.22 schema:affiliation grid-institutes:grid.21729.3f
    116 schema:familyName Nayar
    117 schema:givenName Shree
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640261263.22
    119 rdf:type schema:Person
    120 sg:pub.10.1007/3-540-61123-1_125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040860226
    121 https://doi.org/10.1007/3-540-61123-1_125
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf01327170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015622987
    124 https://doi.org/10.1007/bf01327170
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf01679684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004320587
    127 https://doi.org/10.1007/bf01679684
    128 rdf:type schema:CreativeWork
    129 grid-institutes:grid.21729.3f schema:alternateName Department of Computer Science, Columbia University, 10027, New York, NY
    130 schema:name Department of Computer Science, Columbia University, 10027, New York, NY
    131 rdf:type schema:Organization
    132 grid-institutes:grid.5477.1 schema:alternateName Buys Ballot Laboratory, Helmholtz Instituut, Universiteit Utrecht, Princetonplein 5, 3584CC, Utrecht, The Netherlands
    133 schema:name Buys Ballot Laboratory, Helmholtz Instituut, Universiteit Utrecht, Princetonplein 5, 3584CC, Utrecht, The Netherlands
    134 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...