Towards Automatic Creation of Realistic Anthropomorphic Models for Realtime 3D Telecommunication View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-10

AUTHORS

Jochen Wingbermuehle

ABSTRACT

This contribution describes the creation of highly realistic 3D models of participants for distributed 3D videoconferencing systems. These models consist of a flexible triangular mesh surrounding an interior skeleton structure, which is based on a simplified human skeleton. The vertices of the predefined mesh template are arranged in rigid rings along the bones of the skeleton. Using 3D data obtained by a stereoscopic approach the size and shape of this initial mesh is adapted to the real person. Adaptation allows to texture the model from real images leading to a natural impression. The mesh organization in rigid rings gives an efficient way for surface deformation according to the skeleton movements. The resulting model is transmitted once and subsequently animated using the simple parameter set of the interior skeleton structure. More... »

PAGES

81-96

References to SciGraph publications

  • 1995. Depth Estimation from Stereoscopic Image Pairs Assuming Piecewise Continuos Surfaces in IMAGE PROCESSING FOR BROADCAST AND VIDEO PRODUCTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1008018307114

    DOI

    http://dx.doi.org/10.1023/a:1008018307114

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037262009


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Hannover", 
              "id": "https://www.grid.ac/institutes/grid.9122.8", 
              "name": [
                "Institut fuer Theoretische Nachrichtentechnik und Informationsverarbeitung, Division Automatic Image Interpretation, Universitaet Hannover, Appelstr. 9a, 30167, Hannover, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wingbermuehle", 
            "givenName": "Jochen", 
            "id": "sg:person.015764236052.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015764236052.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1006/jvci.1995.1001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018290901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/ciun.1994.1006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034463624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0146-664x(78)90112-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035093379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4471-3035-2_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049855641", 
              "https://doi.org/10.1007/978-1-4471-3035-2_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jra.1987.1087109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061308670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcg.1986.276672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061390983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cgi.1996.511795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093518626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cgi.1996.511798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094051084"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-10", 
        "datePublishedReg": "1998-10-01", 
        "description": "This contribution describes the creation of highly realistic 3D models of participants for distributed 3D videoconferencing systems. These models consist of a flexible triangular mesh surrounding an interior skeleton structure, which is based on a simplified human skeleton. The vertices of the predefined mesh template are arranged in rigid rings along the bones of the skeleton. Using 3D data obtained by a stereoscopic approach the size and shape of this initial mesh is adapted to the real person. Adaptation allows to texture the model from real images leading to a natural impression. The mesh organization in rigid rings gives an efficient way for surface deformation according to the skeleton movements. The resulting model is transmitted once and subsequently animated using the simple parameter set of the interior skeleton structure.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1008018307114", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297359", 
            "issn": [
              "0922-5773", 
              "1939-8115"
            ], 
            "name": "Journal of Signal Processing Systems", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "Towards Automatic Creation of Realistic Anthropomorphic Models for Realtime 3D Telecommunication", 
        "pagination": "81-96", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b180e1250dd5bd1e92d3bea1d72bae8a0b465902b307626b1a1b5e7fbe91ed30"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1008018307114"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037262009"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1008018307114", 
          "https://app.dimensions.ai/details/publication/pub.1037262009"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000500.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1008018307114"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1008018307114'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1008018307114'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1008018307114'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1008018307114'


     

    This table displays all metadata directly associated to this object as RDF triples.

    86 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1008018307114 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N3129a1a59efd4fe0a561e5b281faab15
    4 schema:citation sg:pub.10.1007/978-1-4471-3035-2_9
    5 https://doi.org/10.1006/ciun.1994.1006
    6 https://doi.org/10.1006/jvci.1995.1001
    7 https://doi.org/10.1016/0146-664x(78)90112-0
    8 https://doi.org/10.1109/cgi.1996.511795
    9 https://doi.org/10.1109/cgi.1996.511798
    10 https://doi.org/10.1109/jra.1987.1087109
    11 https://doi.org/10.1109/mcg.1986.276672
    12 schema:datePublished 1998-10
    13 schema:datePublishedReg 1998-10-01
    14 schema:description This contribution describes the creation of highly realistic 3D models of participants for distributed 3D videoconferencing systems. These models consist of a flexible triangular mesh surrounding an interior skeleton structure, which is based on a simplified human skeleton. The vertices of the predefined mesh template are arranged in rigid rings along the bones of the skeleton. Using 3D data obtained by a stereoscopic approach the size and shape of this initial mesh is adapted to the real person. Adaptation allows to texture the model from real images leading to a natural impression. The mesh organization in rigid rings gives an efficient way for surface deformation according to the skeleton movements. The resulting model is transmitted once and subsequently animated using the simple parameter set of the interior skeleton structure.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N265a49c8e18143bba1fdbbe729516b41
    19 N33eb2f3cc3104285b3024bebbcb7b4fa
    20 sg:journal.1297359
    21 schema:name Towards Automatic Creation of Realistic Anthropomorphic Models for Realtime 3D Telecommunication
    22 schema:pagination 81-96
    23 schema:productId N08254a5a9960465f872158ac9ddf6edb
    24 N553b8337c2954f37a2c94a43d08627c9
    25 Nde96d91156f64d77a9b112adde38c0d7
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037262009
    27 https://doi.org/10.1023/a:1008018307114
    28 schema:sdDatePublished 2019-04-10T18:18
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N34703a1d500e4a08a116a93c0770c5cb
    31 schema:url http://link.springer.com/10.1023/A:1008018307114
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N08254a5a9960465f872158ac9ddf6edb schema:name dimensions_id
    36 schema:value pub.1037262009
    37 rdf:type schema:PropertyValue
    38 N265a49c8e18143bba1fdbbe729516b41 schema:volumeNumber 20
    39 rdf:type schema:PublicationVolume
    40 N3129a1a59efd4fe0a561e5b281faab15 rdf:first sg:person.015764236052.36
    41 rdf:rest rdf:nil
    42 N33eb2f3cc3104285b3024bebbcb7b4fa schema:issueNumber 1-2
    43 rdf:type schema:PublicationIssue
    44 N34703a1d500e4a08a116a93c0770c5cb schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N553b8337c2954f37a2c94a43d08627c9 schema:name readcube_id
    47 schema:value b180e1250dd5bd1e92d3bea1d72bae8a0b465902b307626b1a1b5e7fbe91ed30
    48 rdf:type schema:PropertyValue
    49 Nde96d91156f64d77a9b112adde38c0d7 schema:name doi
    50 schema:value 10.1023/a:1008018307114
    51 rdf:type schema:PropertyValue
    52 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Information and Computing Sciences
    54 rdf:type schema:DefinedTerm
    55 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Artificial Intelligence and Image Processing
    57 rdf:type schema:DefinedTerm
    58 sg:journal.1297359 schema:issn 0922-5773
    59 1939-8115
    60 schema:name Journal of Signal Processing Systems
    61 rdf:type schema:Periodical
    62 sg:person.015764236052.36 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
    63 schema:familyName Wingbermuehle
    64 schema:givenName Jochen
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015764236052.36
    66 rdf:type schema:Person
    67 sg:pub.10.1007/978-1-4471-3035-2_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049855641
    68 https://doi.org/10.1007/978-1-4471-3035-2_9
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.1006/ciun.1994.1006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034463624
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1006/jvci.1995.1001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018290901
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1016/0146-664x(78)90112-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035093379
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1109/cgi.1996.511795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093518626
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1109/cgi.1996.511798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094051084
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1109/jra.1987.1087109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061308670
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1109/mcg.1986.276672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061390983
    83 rdf:type schema:CreativeWork
    84 https://www.grid.ac/institutes/grid.9122.8 schema:alternateName University of Hannover
    85 schema:name Institut fuer Theoretische Nachrichtentechnik und Informationsverarbeitung, Division Automatic Image Interpretation, Universitaet Hannover, Appelstr. 9a, 30167, Hannover, Germany
    86 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...