An Automatic Program Generator for Multi-Level Specialization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-07

AUTHORS

Robert Glück, Jesper Jørgensen

ABSTRACT

Program specialization can divide a computation into several computation stages. This paper investigates the theoretical limitations and practical problems of standard specialization tools, presents multi-level specialization, and demonstrates that, in combination with the cogen approach, it is far more practical than previously supposed. The program generator which we designed and implemented for a higher-order functional language converts programs into very compact multi-level generating extensions that guarantee fast successive specialization. Experimental results show a remarkable reduction of generation time and generator size compared to previous attempts of multi-level specialization by self-application. Our approach to multi-level specialization seems well-suited for applications where generation time and program size are critical. More... »

PAGES

113-158

References to SciGraph publications

  • 1996. Fast binding-time analysis for multi-level specialization in PERSPECTIVES OF SYSTEM INFORMATICS
  • 1996. BTA Algorithms to ensure termination of off-line partial evaluation in PERSPECTIVES OF SYSTEM INFORMATICS
  • 2005-06-16. Mechanically verifying the correctness of an offline partial evaluator in PROGRAMMING LANGUAGES: IMPLEMENTATIONS, LOGICS AND PROGRAMS
  • 1984-12. Polyvariant mixed computation for analyzer programs in ACTA INFORMATICA
  • 1995. Efficient multi-level generating extensions for program specialization in PROGRAMMING LANGUAGES: IMPLEMENTATIONS, LOGICS AND PROGRAMS
  • 1994. Generating transformers for deforestation and supercompilation in STATIC ANALYSIS
  • 1994. Hand-writing program generator generators in PROGRAMMING LANGUAGE IMPLEMENTATION AND LOGIC PROGRAMMING
  • 1990. From interpreting to compiling binding times in ESOP '90
  • 1991. Efficient type inference for higher-order binding-time analysis in FUNCTIONAL PROGRAMMING LANGUAGES AND COMPUTER ARCHITECTURE
  • 1995-09. Binding-time analysis for Standard ML in LISP AND SYMBOLIC COMPUTATION
  • 1989-02. Mix: A self-applicable partial evaluator for experiments in compiler generation in LISP AND SYMBOLIC COMPUTATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1007763000430

    DOI

    http://dx.doi.org/10.1023/a:1007763000430

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038704478


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Copenhagen", 
              "id": "https://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "DIKU, Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gl\u00fcck", 
            "givenName": "Robert", 
            "id": "sg:person.010754010217.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754010217.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Copenhagen", 
              "id": "https://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "Department of Mathematics and Physics, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "J\u00f8rgensen", 
            "givenName": "Jesper", 
            "id": "sg:person.014706352727.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014706352727.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/512644.512652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001377187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-52592-0_57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004069314", 
              "https://doi.org/10.1007/3-540-52592-0_57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0026826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005994428", 
              "https://doi.org/10.1007/bfb0026826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0026826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005994428", 
              "https://doi.org/10.1007/bfb0026826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-6423(91)90035-v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006712362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-62064-8_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007002321", 
              "https://doi.org/10.1007/3-540-62064-8_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-58485-4_57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007111166", 
              "https://doi.org/10.1007/3-540-58485-4_57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01806312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007653765", 
              "https://doi.org/10.1007/bf01806312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01806312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007653765", 
              "https://doi.org/10.1007/bf01806312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/154630.154645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008531480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-62064-8_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008856040", 
              "https://doi.org/10.1007/3-540-62064-8_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(76)90011-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010926984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(76)90011-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010926984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/zamm.19810611218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011836105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0956796800000769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013291679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0890-5401(91)90020-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013770852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/115865.115900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013884143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/237721.237788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015931277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0956796800000782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017914487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/182409.182483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019684346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01019003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019723585", 
              "https://doi.org/10.1007/bf01019003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01019003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019723585", 
              "https://doi.org/10.1007/bf01019003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-58402-1_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021084016", 
              "https://doi.org/10.1007/3-540-58402-1_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0026825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021776056", 
              "https://doi.org/10.1007/bfb0026825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3540543961_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024172582", 
              "https://doi.org/10.1007/3540543961_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/232627.232647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026026986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-6423(91)90002-f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031051825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0956796800001167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038404271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/258993.259019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039900922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0956796800000058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043456960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00271642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053177031", 
              "https://doi.org/10.1007/bf00271642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00271642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053177031", 
              "https://doi.org/10.1007/bf00271642"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-07", 
        "datePublishedReg": "1997-07-01", 
        "description": "Program specialization can divide a computation into several computation stages. This paper investigates the theoretical limitations and practical problems of standard specialization tools, presents multi-level specialization, and demonstrates that, in combination with the cogen approach, it is far more practical than previously supposed. The program generator which we designed and implemented for a higher-order functional language converts programs into very compact multi-level generating extensions that guarantee fast successive specialization. Experimental results show a remarkable reduction of generation time and generator size compared to previous attempts of multi-level specialization by self-application. Our approach to multi-level specialization seems well-suited for applications where generation time and program size are critical.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1007763000430", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1317748", 
            "issn": [
              "0892-4635"
            ], 
            "name": "LISP and Symbolic Computation", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "An Automatic Program Generator for Multi-Level Specialization", 
        "pagination": "113-158", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b85f2e1dd48a294737928cc18b1d29c8016ab97c3d8e5816820032e6f97e2a9e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1007763000430"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038704478"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1007763000430", 
          "https://app.dimensions.ai/details/publication/pub.1038704478"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000500.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1007763000430"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1007763000430'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1007763000430'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1007763000430'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1007763000430'


     

    This table displays all metadata directly associated to this object as RDF triples.

    160 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1007763000430 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author N4d27a5e895c54de8992929af07c9d1de
    4 schema:citation sg:pub.10.1007/3-540-52592-0_57
    5 sg:pub.10.1007/3-540-58402-1_15
    6 sg:pub.10.1007/3-540-58485-4_57
    7 sg:pub.10.1007/3-540-62064-8_22
    8 sg:pub.10.1007/3-540-62064-8_23
    9 sg:pub.10.1007/3540543961_22
    10 sg:pub.10.1007/bf00271642
    11 sg:pub.10.1007/bf01019003
    12 sg:pub.10.1007/bf01806312
    13 sg:pub.10.1007/bfb0026825
    14 sg:pub.10.1007/bfb0026826
    15 https://doi.org/10.1002/zamm.19810611218
    16 https://doi.org/10.1016/0004-3702(76)90011-4
    17 https://doi.org/10.1016/0167-6423(91)90002-f
    18 https://doi.org/10.1016/0167-6423(91)90035-v
    19 https://doi.org/10.1016/0890-5401(91)90020-3
    20 https://doi.org/10.1017/s0956796800000058
    21 https://doi.org/10.1017/s0956796800000769
    22 https://doi.org/10.1017/s0956796800000782
    23 https://doi.org/10.1017/s0956796800001167
    24 https://doi.org/10.1145/115865.115900
    25 https://doi.org/10.1145/154630.154645
    26 https://doi.org/10.1145/182409.182483
    27 https://doi.org/10.1145/232627.232647
    28 https://doi.org/10.1145/237721.237788
    29 https://doi.org/10.1145/258993.259019
    30 https://doi.org/10.1145/512644.512652
    31 schema:datePublished 1997-07
    32 schema:datePublishedReg 1997-07-01
    33 schema:description Program specialization can divide a computation into several computation stages. This paper investigates the theoretical limitations and practical problems of standard specialization tools, presents multi-level specialization, and demonstrates that, in combination with the cogen approach, it is far more practical than previously supposed. The program generator which we designed and implemented for a higher-order functional language converts programs into very compact multi-level generating extensions that guarantee fast successive specialization. Experimental results show a remarkable reduction of generation time and generator size compared to previous attempts of multi-level specialization by self-application. Our approach to multi-level specialization seems well-suited for applications where generation time and program size are critical.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree false
    37 schema:isPartOf N20ffde8c9b5b48d3973a2458dbd29d4e
    38 N727ac9cb0e224a9985d0741b1e6e0b77
    39 sg:journal.1317748
    40 schema:name An Automatic Program Generator for Multi-Level Specialization
    41 schema:pagination 113-158
    42 schema:productId N4eeb0faea26c4d32b6c7060bd394e30c
    43 Nb1631a682a904e34a9b8e7e219b76ad7
    44 Nc677049cb2ab44618df892e65c2a18a2
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038704478
    46 https://doi.org/10.1023/a:1007763000430
    47 schema:sdDatePublished 2019-04-10T14:06
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N17d0df0527b64c0e9cfe0e69b0e0c74e
    50 schema:url http://link.springer.com/10.1023/A:1007763000430
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N17d0df0527b64c0e9cfe0e69b0e0c74e schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 N20ffde8c9b5b48d3973a2458dbd29d4e schema:issueNumber 2
    57 rdf:type schema:PublicationIssue
    58 N4094c654e7584ccf9bfa31a8aac381d2 rdf:first sg:person.014706352727.82
    59 rdf:rest rdf:nil
    60 N4d27a5e895c54de8992929af07c9d1de rdf:first sg:person.010754010217.31
    61 rdf:rest N4094c654e7584ccf9bfa31a8aac381d2
    62 N4eeb0faea26c4d32b6c7060bd394e30c schema:name dimensions_id
    63 schema:value pub.1038704478
    64 rdf:type schema:PropertyValue
    65 N727ac9cb0e224a9985d0741b1e6e0b77 schema:volumeNumber 10
    66 rdf:type schema:PublicationVolume
    67 Nb1631a682a904e34a9b8e7e219b76ad7 schema:name readcube_id
    68 schema:value b85f2e1dd48a294737928cc18b1d29c8016ab97c3d8e5816820032e6f97e2a9e
    69 rdf:type schema:PropertyValue
    70 Nc677049cb2ab44618df892e65c2a18a2 schema:name doi
    71 schema:value 10.1023/a:1007763000430
    72 rdf:type schema:PropertyValue
    73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Information and Computing Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Computation Theory and Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1317748 schema:issn 0892-4635
    80 schema:name LISP and Symbolic Computation
    81 rdf:type schema:Periodical
    82 sg:person.010754010217.31 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
    83 schema:familyName Glück
    84 schema:givenName Robert
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754010217.31
    86 rdf:type schema:Person
    87 sg:person.014706352727.82 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
    88 schema:familyName Jørgensen
    89 schema:givenName Jesper
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014706352727.82
    91 rdf:type schema:Person
    92 sg:pub.10.1007/3-540-52592-0_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004069314
    93 https://doi.org/10.1007/3-540-52592-0_57
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/3-540-58402-1_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021084016
    96 https://doi.org/10.1007/3-540-58402-1_15
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/3-540-58485-4_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007111166
    99 https://doi.org/10.1007/3-540-58485-4_57
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/3-540-62064-8_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008856040
    102 https://doi.org/10.1007/3-540-62064-8_22
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/3-540-62064-8_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007002321
    105 https://doi.org/10.1007/3-540-62064-8_23
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/3540543961_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024172582
    108 https://doi.org/10.1007/3540543961_22
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf00271642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053177031
    111 https://doi.org/10.1007/bf00271642
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf01019003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019723585
    114 https://doi.org/10.1007/bf01019003
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf01806312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007653765
    117 https://doi.org/10.1007/bf01806312
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/bfb0026825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021776056
    120 https://doi.org/10.1007/bfb0026825
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/bfb0026826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005994428
    123 https://doi.org/10.1007/bfb0026826
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1002/zamm.19810611218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011836105
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/0004-3702(76)90011-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010926984
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/0167-6423(91)90002-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1031051825
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/0167-6423(91)90035-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1006712362
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/0890-5401(91)90020-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013770852
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1017/s0956796800000058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043456960
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1017/s0956796800000769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013291679
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1017/s0956796800000782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017914487
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1017/s0956796800001167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038404271
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1145/115865.115900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013884143
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1145/154630.154645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008531480
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1145/182409.182483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019684346
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1145/232627.232647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026026986
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1145/237721.237788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015931277
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1145/258993.259019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039900922
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1145/512644.512652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001377187
    156 rdf:type schema:CreativeWork
    157 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
    158 schema:name DIKU, Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100, Copenhagen, Denmark
    159 Department of Mathematics and Physics, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
    160 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...