Selecting Examples for Partial Memory Learning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-10

AUTHORS

Marcus A. Maloof, Ryszard S. Michalski

ABSTRACT

This paper describes a method for selecting training examples for a partial memory learning system. The method selects extreme examples that lie at the boundaries of concept descriptions and uses these examples with new training examples to induce new concept descriptions. Forgetting mechanisms also may be active to remove examples from partial memory that are irrelevant or outdated for the learning task. Using an implementation of the method, we conducted a lesion study and a direct comparison to examine the effects of partial memory learning on predictive accuracy and on the number of training examples maintained during learning. These experiments involved the STAGGER Concepts, a synthetic problem, and two real-world problems: a blasting cap detection problem and a computer intrusion detection problem. Experimental results suggest that the partial memory learner notably reduced memory requirements at the slight expense of predictive accuracy, and tracked concept drift as well as other learners designed for this task. More... »

PAGES

27-52

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1007661119649

DOI

http://dx.doi.org/10.1023/a:1007661119649

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018650476


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Georgetown University", 
          "id": "https://www.grid.ac/institutes/grid.213910.8", 
          "name": [
            "Department of Computer Science, Georgetown University, 20057, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maloof", 
        "givenName": "Marcus A.", 
        "id": "sg:person.011417333344.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011417333344.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instytut Podstaw Informatyki", 
          "id": "https://www.grid.ac/institutes/grid.425308.8", 
          "name": [
            "Machine Learning and Inference Laboratory, George Mason University, 22030, Fairfax, VA, USA", 
            "Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michalski", 
        "givenName": "Ryszard S.", 
        "id": "sg:person.07743310111.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07743310111.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00114264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000846536", 
          "https://doi.org/10.1007/bf00114264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003205548", 
          "https://doi.org/10.1007/bf00058925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12405-5_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004370089", 
          "https://doi.org/10.1007/978-3-662-12405-5_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0957-4174(96)00076-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005525804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013474790", 
          "https://doi.org/10.1007/bf00116835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08839519208949949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016505267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007365809034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017758049", 
          "https://doi.org/10.1023/a:1007365809034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-307-3.50042-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018885226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-213-7.50017-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020130148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-934613-64-4.50017-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024961577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025237168", 
          "https://doi.org/10.1007/bf00116900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8655(92)90110-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033409773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8655(92)90110-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033409773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1936.tb02137.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036660865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00153759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049631378", 
          "https://doi.org/10.1007/bf00153759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00153759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049631378", 
          "https://doi.org/10.1007/bf00153759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.9110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5254.671089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061186203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1980.4767034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061741706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tai.1995.479784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093180035"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-10", 
    "datePublishedReg": "2000-10-01", 
    "description": "This paper describes a method for selecting training examples for a partial memory learning system. The method selects extreme examples that lie at the boundaries of concept descriptions and uses these examples with new training examples to induce new concept descriptions. Forgetting mechanisms also may be active to remove examples from partial memory that are irrelevant or outdated for the learning task. Using an implementation of the method, we conducted a lesion study and a direct comparison to examine the effects of partial memory learning on predictive accuracy and on the number of training examples maintained during learning. These experiments involved the STAGGER Concepts, a synthetic problem, and two real-world problems: a blasting cap detection problem and a computer intrusion detection problem. Experimental results suggest that the partial memory learner notably reduced memory requirements at the slight expense of predictive accuracy, and tracked concept drift as well as other learners designed for this task.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1007661119649", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "name": "Selecting Examples for Partial Memory Learning", 
    "pagination": "27-52", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "58dca99943b99de3cd413294549d9eae0af6d64dfc603c3b322d63d4980ea222"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1007661119649"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018650476"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1007661119649", 
      "https://app.dimensions.ai/details/publication/pub.1018650476"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1007661119649"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1007661119649'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1007661119649'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1007661119649'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1007661119649'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1007661119649 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N68a286df8eba4379afb38585e67088f4
4 schema:citation sg:pub.10.1007/978-3-662-12405-5_4
5 sg:pub.10.1007/bf00058925
6 sg:pub.10.1007/bf00114264
7 sg:pub.10.1007/bf00116835
8 sg:pub.10.1007/bf00116900
9 sg:pub.10.1007/bf00153759
10 sg:pub.10.1023/a:1007365809034
11 https://doi.org/10.1016/0167-8655(92)90110-l
12 https://doi.org/10.1016/b978-0-934613-64-4.50017-7
13 https://doi.org/10.1016/b978-1-55860-213-7.50017-1
14 https://doi.org/10.1016/b978-1-55860-307-3.50042-3
15 https://doi.org/10.1016/s0957-4174(96)00076-0
16 https://doi.org/10.1080/08839519208949949
17 https://doi.org/10.1109/34.9110
18 https://doi.org/10.1109/5254.671089
19 https://doi.org/10.1109/tai.1995.479784
20 https://doi.org/10.1109/tpami.1980.4767034
21 https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
22 schema:datePublished 2000-10
23 schema:datePublishedReg 2000-10-01
24 schema:description This paper describes a method for selecting training examples for a partial memory learning system. The method selects extreme examples that lie at the boundaries of concept descriptions and uses these examples with new training examples to induce new concept descriptions. Forgetting mechanisms also may be active to remove examples from partial memory that are irrelevant or outdated for the learning task. Using an implementation of the method, we conducted a lesion study and a direct comparison to examine the effects of partial memory learning on predictive accuracy and on the number of training examples maintained during learning. These experiments involved the STAGGER Concepts, a synthetic problem, and two real-world problems: a blasting cap detection problem and a computer intrusion detection problem. Experimental results suggest that the partial memory learner notably reduced memory requirements at the slight expense of predictive accuracy, and tracked concept drift as well as other learners designed for this task.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N5372ddc8b84a41409b4f49b56ea01a24
29 N7e5503be2f6547caa3d4477c95c7cf8a
30 sg:journal.1125588
31 schema:name Selecting Examples for Partial Memory Learning
32 schema:pagination 27-52
33 schema:productId N4852f3a3f9b4464890b8406ed1ed3e42
34 N5eadf070f65e4c8a8c5f35c6d43da3d5
35 Nc8528f5a6d2845c1b48594b8c0b66e01
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018650476
37 https://doi.org/10.1023/a:1007661119649
38 schema:sdDatePublished 2019-04-11T01:57
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N23ef3f39631f4845bae7f737f896c02d
41 schema:url http://link.springer.com/10.1023/A:1007661119649
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N23ef3f39631f4845bae7f737f896c02d schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N4852f3a3f9b4464890b8406ed1ed3e42 schema:name readcube_id
48 schema:value 58dca99943b99de3cd413294549d9eae0af6d64dfc603c3b322d63d4980ea222
49 rdf:type schema:PropertyValue
50 N5372ddc8b84a41409b4f49b56ea01a24 schema:volumeNumber 41
51 rdf:type schema:PublicationVolume
52 N5eadf070f65e4c8a8c5f35c6d43da3d5 schema:name dimensions_id
53 schema:value pub.1018650476
54 rdf:type schema:PropertyValue
55 N68a286df8eba4379afb38585e67088f4 rdf:first sg:person.011417333344.69
56 rdf:rest Nfc713f2106724c0d873508bb69412eb4
57 N7e5503be2f6547caa3d4477c95c7cf8a schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 Nc8528f5a6d2845c1b48594b8c0b66e01 schema:name doi
60 schema:value 10.1023/a:1007661119649
61 rdf:type schema:PropertyValue
62 Nfc713f2106724c0d873508bb69412eb4 rdf:first sg:person.07743310111.49
63 rdf:rest rdf:nil
64 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
65 schema:name Psychology and Cognitive Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
68 schema:name Psychology
69 rdf:type schema:DefinedTerm
70 sg:journal.1125588 schema:issn 0885-6125
71 1573-0565
72 schema:name Machine Learning
73 rdf:type schema:Periodical
74 sg:person.011417333344.69 schema:affiliation https://www.grid.ac/institutes/grid.213910.8
75 schema:familyName Maloof
76 schema:givenName Marcus A.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011417333344.69
78 rdf:type schema:Person
79 sg:person.07743310111.49 schema:affiliation https://www.grid.ac/institutes/grid.425308.8
80 schema:familyName Michalski
81 schema:givenName Ryszard S.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07743310111.49
83 rdf:type schema:Person
84 sg:pub.10.1007/978-3-662-12405-5_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004370089
85 https://doi.org/10.1007/978-3-662-12405-5_4
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf00058925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003205548
88 https://doi.org/10.1007/bf00058925
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf00114264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000846536
91 https://doi.org/10.1007/bf00114264
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf00116835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013474790
94 https://doi.org/10.1007/bf00116835
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf00116900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025237168
97 https://doi.org/10.1007/bf00116900
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf00153759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049631378
100 https://doi.org/10.1007/bf00153759
101 rdf:type schema:CreativeWork
102 sg:pub.10.1023/a:1007365809034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017758049
103 https://doi.org/10.1023/a:1007365809034
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0167-8655(92)90110-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1033409773
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/b978-0-934613-64-4.50017-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024961577
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/b978-1-55860-213-7.50017-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020130148
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/b978-1-55860-307-3.50042-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018885226
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0957-4174(96)00076-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005525804
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1080/08839519208949949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016505267
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/34.9110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157241
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/5254.671089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061186203
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tai.1995.479784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093180035
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/tpami.1980.4767034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061741706
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1111/j.1469-1809.1936.tb02137.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036660865
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.213910.8 schema:alternateName Georgetown University
128 schema:name Department of Computer Science, Georgetown University, 20057, Washington, DC, USA
129 rdf:type schema:Organization
130 https://www.grid.ac/institutes/grid.425308.8 schema:alternateName Instytut Podstaw Informatyki
131 schema:name Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
132 Machine Learning and Inference Laboratory, George Mason University, 22030, Fairfax, VA, USA
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...