Biodeteriorative processes on glass: experimental proof of the role of fungi and cyanobacteria View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-09

AUTHORS

Anna Andrejevna Gorbushina, Katarzyna Aldona Palinska

ABSTRACT

Biodeterioration of glass under the influence of fungi and cyanobacteria was simulated on model glasses produced according to the old recipes. Strains of fungi and cyanobacteria chosen for the investigation were isolated from biodeteriorated glass windows or similar indoor environment and are reported to be frequently involved in glass alteration. Growth of fungi and cyanobacteria resulted in the dense colonisation of the material with an expressed biofilm formation on the glass surface. The following deterioration phenomena were observed: micropitting and crack formation by all studied fungi and cyanobacteria; delineatingtraces of cells, hyphae and filaments on the glass surface; colour change of the surface due to fungal or cyanobacterial growth; biogenic minerals deposition as a consequence of the microbial metabolism on the glass surface. The pattern of glass biopitting produced in the experiment was very similar to the biopits observed on antique and medieval glasses (Krumbein et al., 1991). Crack formation pattern was strain-specific, but appeared to be independent of the chemical composition of the glass itself. The degree of deterioration was changing according to the sensitivity of the glass in question to corrosion. More... »

PAGES

183-192

References to SciGraph publications

Journal

TITLE

Aerobiologia

ISSUE

3

VOLUME

15

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1007616614172

DOI

http://dx.doi.org/10.1023/a:1007616614172

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007900296


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Geomicrobiology, Carl von Ossietzky University, ICBM, PO Box 2503, 26111, Oldenburg, Germany (fax"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gorbushina", 
        "givenName": "Anna Andrejevna", 
        "id": "sg:person.0704675400.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704675400.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Pasteur", 
          "id": "https://www.grid.ac/institutes/grid.428999.7", 
          "name": [
            "Geomicrobiology, Carl von Ossietzky University, ICBM, PO Box 2503, 26111, Oldenburg, Germany (fax", 
            "Institut Pasteur; Unit\u00e9 de Physiologie D\u00e9p. de Biochimie et G\u00e9n\u00e9tique Microbienne, F-75724, Paris Cedex 15, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palinska", 
        "givenName": "Katarzyna Aldona", 
        "id": "sg:person.01303137461.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303137461.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4684-7612-5_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001521807", 
          "https://doi.org/10.1007/978-1-4684-7612-5_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/112299a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002119373", 
          "https://doi.org/10.1038/112299a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00635550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003304139", 
          "https://doi.org/10.1007/bf00635550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00635550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003304139", 
          "https://doi.org/10.1007/bf00635550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01490459109385995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019089187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/328147a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022277184", 
          "https://doi.org/10.1038/328147a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0953756297003560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030690885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(92)90104-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040988320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(92)90104-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040988320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2541(94)00098-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043737699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1502-3931.1970.tb01858.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044281565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00550580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046952948", 
          "https://doi.org/10.1007/bf00550580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00550580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046952948", 
          "https://doi.org/10.1007/bf00550580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/maco.19940450212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049184251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-111-1-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060363175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082536621", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-09", 
    "datePublishedReg": "1999-09-01", 
    "description": "Biodeterioration of glass under the influence of fungi and cyanobacteria was simulated on model glasses produced according to the old recipes. Strains of fungi and cyanobacteria chosen for the investigation were isolated from biodeteriorated glass windows or similar indoor environment and are reported to be frequently involved in glass alteration. Growth of fungi and cyanobacteria resulted in the dense colonisation of the material with an expressed biofilm formation on the glass surface. The following deterioration phenomena were observed: micropitting and crack formation by all studied fungi and cyanobacteria; delineatingtraces of cells, hyphae and filaments on the glass surface; colour change of the surface due to fungal or cyanobacterial growth; biogenic minerals deposition as a consequence of the microbial metabolism on the glass surface. The pattern of glass biopitting produced in the experiment was very similar to the biopits observed on antique and medieval glasses (Krumbein et al., 1991). Crack formation pattern was strain-specific, but appeared to be independent of the chemical composition of the glass itself. The degree of deterioration was changing according to the sensitivity of the glass in question to corrosion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1007616614172", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1133886", 
        "issn": [
          "0393-5965", 
          "1573-3025"
        ], 
        "name": "Aerobiologia", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Biodeteriorative processes on glass: experimental proof of the role of fungi and cyanobacteria", 
    "pagination": "183-192", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "25a24e5bb205e0d50b3167dbe4c851fd9de80bf9930f1757fce895897571f71d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1007616614172"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007900296"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1007616614172", 
      "https://app.dimensions.ai/details/publication/pub.1007900296"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1007616614172"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1007616614172'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1007616614172'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1007616614172'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1007616614172'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1007616614172 schema:about anzsrc-for:06
2 anzsrc-for:0605
3 schema:author Nb345edb7c9aa431295e5015e5e408b45
4 schema:citation sg:pub.10.1007/978-1-4684-7612-5_6
5 sg:pub.10.1007/bf00550580
6 sg:pub.10.1007/bf00635550
7 sg:pub.10.1038/112299a0
8 sg:pub.10.1038/328147a0
9 https://app.dimensions.ai/details/publication/pub.1082536621
10 https://doi.org/10.1002/maco.19940450212
11 https://doi.org/10.1016/0009-2541(94)00098-s
12 https://doi.org/10.1016/0016-7037(92)90104-q
13 https://doi.org/10.1017/s0953756297003560
14 https://doi.org/10.1080/01490459109385995
15 https://doi.org/10.1099/00221287-111-1-1
16 https://doi.org/10.1111/j.1502-3931.1970.tb01858.x
17 schema:datePublished 1999-09
18 schema:datePublishedReg 1999-09-01
19 schema:description Biodeterioration of glass under the influence of fungi and cyanobacteria was simulated on model glasses produced according to the old recipes. Strains of fungi and cyanobacteria chosen for the investigation were isolated from biodeteriorated glass windows or similar indoor environment and are reported to be frequently involved in glass alteration. Growth of fungi and cyanobacteria resulted in the dense colonisation of the material with an expressed biofilm formation on the glass surface. The following deterioration phenomena were observed: micropitting and crack formation by all studied fungi and cyanobacteria; delineatingtraces of cells, hyphae and filaments on the glass surface; colour change of the surface due to fungal or cyanobacterial growth; biogenic minerals deposition as a consequence of the microbial metabolism on the glass surface. The pattern of glass biopitting produced in the experiment was very similar to the biopits observed on antique and medieval glasses (Krumbein et al., 1991). Crack formation pattern was strain-specific, but appeared to be independent of the chemical composition of the glass itself. The degree of deterioration was changing according to the sensitivity of the glass in question to corrosion.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N418f3989c04e4b21a0b0e0d297d891c6
24 Ne81381d44c9d48df9fec73a2b07296be
25 sg:journal.1133886
26 schema:name Biodeteriorative processes on glass: experimental proof of the role of fungi and cyanobacteria
27 schema:pagination 183-192
28 schema:productId N1e4ec4152c8a4e9cb9c17db0b2a33583
29 N2cd3284054e8463798b020ac9f5c8cca
30 Nbbd3c8f3c0114ab7be360a982fd71bea
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007900296
32 https://doi.org/10.1023/a:1007616614172
33 schema:sdDatePublished 2019-04-10T16:39
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Ned81f1eca9204cba80d7ae7f7cc9347e
36 schema:url http://link.springer.com/10.1023/A:1007616614172
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N11075e45541c44f5acf587c227a73fb7 rdf:first sg:person.01303137461.51
41 rdf:rest rdf:nil
42 N1e4ec4152c8a4e9cb9c17db0b2a33583 schema:name dimensions_id
43 schema:value pub.1007900296
44 rdf:type schema:PropertyValue
45 N2cd3284054e8463798b020ac9f5c8cca schema:name readcube_id
46 schema:value 25a24e5bb205e0d50b3167dbe4c851fd9de80bf9930f1757fce895897571f71d
47 rdf:type schema:PropertyValue
48 N2d6eed9d1540496788fe295704c4d1c9 schema:name Geomicrobiology, Carl von Ossietzky University, ICBM, PO Box 2503, 26111, Oldenburg, Germany (fax
49 rdf:type schema:Organization
50 N418f3989c04e4b21a0b0e0d297d891c6 schema:volumeNumber 15
51 rdf:type schema:PublicationVolume
52 Nb345edb7c9aa431295e5015e5e408b45 rdf:first sg:person.0704675400.84
53 rdf:rest N11075e45541c44f5acf587c227a73fb7
54 Nbbd3c8f3c0114ab7be360a982fd71bea schema:name doi
55 schema:value 10.1023/a:1007616614172
56 rdf:type schema:PropertyValue
57 Ne81381d44c9d48df9fec73a2b07296be schema:issueNumber 3
58 rdf:type schema:PublicationIssue
59 Ned81f1eca9204cba80d7ae7f7cc9347e schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
62 schema:name Biological Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
65 schema:name Microbiology
66 rdf:type schema:DefinedTerm
67 sg:journal.1133886 schema:issn 0393-5965
68 1573-3025
69 schema:name Aerobiologia
70 rdf:type schema:Periodical
71 sg:person.01303137461.51 schema:affiliation https://www.grid.ac/institutes/grid.428999.7
72 schema:familyName Palinska
73 schema:givenName Katarzyna Aldona
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303137461.51
75 rdf:type schema:Person
76 sg:person.0704675400.84 schema:affiliation N2d6eed9d1540496788fe295704c4d1c9
77 schema:familyName Gorbushina
78 schema:givenName Anna Andrejevna
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704675400.84
80 rdf:type schema:Person
81 sg:pub.10.1007/978-1-4684-7612-5_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001521807
82 https://doi.org/10.1007/978-1-4684-7612-5_6
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf00550580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046952948
85 https://doi.org/10.1007/bf00550580
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf00635550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003304139
88 https://doi.org/10.1007/bf00635550
89 rdf:type schema:CreativeWork
90 sg:pub.10.1038/112299a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002119373
91 https://doi.org/10.1038/112299a0
92 rdf:type schema:CreativeWork
93 sg:pub.10.1038/328147a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022277184
94 https://doi.org/10.1038/328147a0
95 rdf:type schema:CreativeWork
96 https://app.dimensions.ai/details/publication/pub.1082536621 schema:CreativeWork
97 https://doi.org/10.1002/maco.19940450212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049184251
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0009-2541(94)00098-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1043737699
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0016-7037(92)90104-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1040988320
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1017/s0953756297003560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030690885
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1080/01490459109385995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019089187
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1099/00221287-111-1-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060363175
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1111/j.1502-3931.1970.tb01858.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044281565
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.428999.7 schema:alternateName Institut Pasteur
112 schema:name Geomicrobiology, Carl von Ossietzky University, ICBM, PO Box 2503, 26111, Oldenburg, Germany (fax
113 Institut Pasteur; Unité de Physiologie Dép. de Biochimie et Génétique Microbienne, F-75724, Paris Cedex 15, France
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...