Use of Artificial Neural Networks to Predict Drug Dissolution Profiles and Evaluation of Network Performance Using Similarity Factor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-11

AUTHORS

Kok Khiang Peh, Chee Peng Lim, Siow San Quek, Kean Hock Khoh

ABSTRACT

Purpose. To use artificial neural networks for predicting dissolution profiles of matrix-controlled release theophylline pellet preparation, and to evaluate the network performance by comparing the predicted dissolution profiles with those obtained from physical experiments using similarity factor.Methods. The Multi-Layered Perceptron (MLP) neural network was used to predict the dissolution profiles of theophylline pellets containing different ratios of microcrystalline cellulose (MCC) and glyceryl monostearate (GMS). The concepts of leave-one-out as well as a time-point by time-point estimation basis were used to predict the rate of drug release for each matrix ratio. All the data were used for training, except for one set which was selected to compare with the predicted output. The closeness between the predicted and the reference dissolution profiles was investigated using similarity factor (f2).Results. The f2 values were all above 60, indicating that the predicted dissolution profiles were closely similar to the dissolution profiles obtained from physical experiments.Conclusion. The MLP network could be used as a model for predicting the dissolution profiles of matrix-controlled release theophylline pellet preparation in product development. More... »

PAGES

1384-1389

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1007578321803

DOI

http://dx.doi.org/10.1023/a:1007578321803

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000308030

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11205731


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cellulose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemistry, Pharmaceutical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Delayed-Action Preparations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Excipients", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycerides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks, Computer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Solubility", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Theophylline", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Pharmaceutical Sciences, University of Science Malaysia, 11800, Penang, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11875.3a", 
          "name": [
            "School of Pharmaceutical Sciences, University of Science Malaysia, 11800, Penang, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peh", 
        "givenName": "Kok Khiang", 
        "id": "sg:person.0610230334.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610230334.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11875.3a", 
          "name": [
            "School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Chee Peng", 
        "id": "sg:person.014644360675.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014644360675.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11875.3a", 
          "name": [
            "School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quek", 
        "givenName": "Siow San", 
        "id": "sg:person.01175124131.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175124131.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11875.3a", 
          "name": [
            "School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khoh", 
        "givenName": "Kean Hock", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02551274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023250347", 
          "https://doi.org/10.1007/bf02551274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018917128684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028417432", 
          "https://doi.org/10.1023/a:1018917128684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015843527138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002628904", 
          "https://doi.org/10.1023/a:1015843527138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016260720218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000414328", 
          "https://doi.org/10.1023/a:1016260720218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-6036-0_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011433912", 
          "https://doi.org/10.1007/978-1-4684-6036-0_25"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-11", 
    "datePublishedReg": "2000-11-01", 
    "description": "Purpose. To use artificial neural networks for predicting dissolution profiles of matrix-controlled release theophylline pellet preparation, and to evaluate the network performance by comparing the predicted dissolution profiles with those obtained from physical experiments using similarity factor.Methods. The Multi-Layered Perceptron (MLP) neural network was used to predict the dissolution profiles of theophylline pellets containing different ratios of microcrystalline cellulose (MCC) and glyceryl monostearate (GMS). The concepts of leave-one-out as well as a time-point by time-point estimation basis were used to predict the rate of drug release for each matrix ratio. All the data were used for training, except for one set which was selected to compare with the predicted output. The closeness between the predicted and the reference dissolution profiles was investigated using similarity factor (f2).Results. The f2 values were all above 60, indicating that the predicted dissolution profiles were closely similar to the dissolution profiles obtained from physical experiments.Conclusion. The MLP network could be used as a model for predicting the dissolution profiles of matrix-controlled release theophylline pellet preparation in product development.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1007578321803", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094644", 
        "issn": [
          "0724-8741", 
          "1573-904X"
        ], 
        "name": "Pharmaceutical Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "artificial neural network", 
      "neural network", 
      "multi-layered perceptron neural network", 
      "perceptron neural network", 
      "network performance", 
      "MLP network", 
      "network", 
      "similarity factor", 
      "physical experiments", 
      "product development", 
      "one-out", 
      "estimation basis", 
      "set", 
      "performance", 
      "experiments", 
      "concept", 
      "training", 
      "output", 
      "model", 
      "drug dissolution profiles", 
      "data", 
      "closeness", 
      "evaluation", 
      "use", 
      "development", 
      "dissolution profiles", 
      "basis", 
      "glyceryl monostearate", 
      "pellet preparation", 
      "microcrystalline cellulose", 
      "drug release", 
      "theophylline pellets", 
      "values", 
      "profile", 
      "factors", 
      "rate", 
      "different ratios", 
      "preparation", 
      "F2 values", 
      "ratio", 
      "monostearate", 
      "cellulose", 
      "matrix ratio", 
      "release", 
      "pellets"
    ], 
    "name": "Use of Artificial Neural Networks to Predict Drug Dissolution Profiles and Evaluation of Network Performance Using Similarity Factor", 
    "pagination": "1384-1389", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000308030"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1007578321803"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11205731"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1007578321803", 
      "https://app.dimensions.ai/details/publication/pub.1000308030"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_319.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1007578321803"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1007578321803'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1007578321803'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1007578321803'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1007578321803'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      86 URIs      73 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1007578321803 schema:about N0a19b28df7744134a9b5e5ab9e5530a7
2 N17f65b9122c743639b1afff9ec924f61
3 N2304f021741f4b4996ba326148a382ee
4 N51859a5856af40838fd585832554d8a9
5 N78189ced19d349d1a45a5bed27ce91f7
6 N9f6af481cc0948bea94d8064d4e59695
7 Nae489fd8396141cca8d25ee6bfaed041
8 Nc654f81265e749c88e5d100e64afa1ba
9 Nd6e20140f36541b9bfa3280523ecad45
10 Ne2406e71b71649fd8dd4ebf5e0c97a73
11 anzsrc-for:11
12 anzsrc-for:1115
13 schema:author N0f68cea4d2804b3b952d24a0d7ea49f2
14 schema:citation sg:pub.10.1007/978-1-4684-6036-0_25
15 sg:pub.10.1007/bf02551274
16 sg:pub.10.1023/a:1015843527138
17 sg:pub.10.1023/a:1016260720218
18 sg:pub.10.1023/a:1018917128684
19 schema:datePublished 2000-11
20 schema:datePublishedReg 2000-11-01
21 schema:description Purpose. To use artificial neural networks for predicting dissolution profiles of matrix-controlled release theophylline pellet preparation, and to evaluate the network performance by comparing the predicted dissolution profiles with those obtained from physical experiments using similarity factor.Methods. The Multi-Layered Perceptron (MLP) neural network was used to predict the dissolution profiles of theophylline pellets containing different ratios of microcrystalline cellulose (MCC) and glyceryl monostearate (GMS). The concepts of leave-one-out as well as a time-point by time-point estimation basis were used to predict the rate of drug release for each matrix ratio. All the data were used for training, except for one set which was selected to compare with the predicted output. The closeness between the predicted and the reference dissolution profiles was investigated using similarity factor (f2).Results. The f2 values were all above 60, indicating that the predicted dissolution profiles were closely similar to the dissolution profiles obtained from physical experiments.Conclusion. The MLP network could be used as a model for predicting the dissolution profiles of matrix-controlled release theophylline pellet preparation in product development.
22 schema:genre article
23 schema:isAccessibleForFree false
24 schema:isPartOf N4b528955b97b4e1a887f36ca9520af68
25 Nd3734810862f47a6ab167b642d324ce0
26 sg:journal.1094644
27 schema:keywords F2 values
28 MLP network
29 artificial neural network
30 basis
31 cellulose
32 closeness
33 concept
34 data
35 development
36 different ratios
37 dissolution profiles
38 drug dissolution profiles
39 drug release
40 estimation basis
41 evaluation
42 experiments
43 factors
44 glyceryl monostearate
45 matrix ratio
46 microcrystalline cellulose
47 model
48 monostearate
49 multi-layered perceptron neural network
50 network
51 network performance
52 neural network
53 one-out
54 output
55 pellet preparation
56 pellets
57 perceptron neural network
58 performance
59 physical experiments
60 preparation
61 product development
62 profile
63 rate
64 ratio
65 release
66 set
67 similarity factor
68 theophylline pellets
69 training
70 use
71 values
72 schema:name Use of Artificial Neural Networks to Predict Drug Dissolution Profiles and Evaluation of Network Performance Using Similarity Factor
73 schema:pagination 1384-1389
74 schema:productId N99c363c7c6e74f5aacb242cb6ddf8a10
75 Na7e0d52ed58e45c28c0f8da9d84316ee
76 Nd60378f967bb4ec4853bb755b9d933a6
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000308030
78 https://doi.org/10.1023/a:1007578321803
79 schema:sdDatePublished 2022-08-04T16:54
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N31f0e4832fad436b977c76dde7791fa1
82 schema:url https://doi.org/10.1023/a:1007578321803
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N0a19b28df7744134a9b5e5ab9e5530a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Kinetics
88 rdf:type schema:DefinedTerm
89 N0f68cea4d2804b3b952d24a0d7ea49f2 rdf:first sg:person.0610230334.11
90 rdf:rest N478b6eaf649442ccbe3682f940714863
91 N17f65b9122c743639b1afff9ec924f61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Excipients
93 rdf:type schema:DefinedTerm
94 N2304f021741f4b4996ba326148a382ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Theophylline
96 rdf:type schema:DefinedTerm
97 N31f0e4832fad436b977c76dde7791fa1 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N478b6eaf649442ccbe3682f940714863 rdf:first sg:person.014644360675.43
100 rdf:rest N6ec790e59bc84849b97e829d38d10f29
101 N4b528955b97b4e1a887f36ca9520af68 schema:issueNumber 11
102 rdf:type schema:PublicationIssue
103 N51859a5856af40838fd585832554d8a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Solubility
105 rdf:type schema:DefinedTerm
106 N6ec790e59bc84849b97e829d38d10f29 rdf:first sg:person.01175124131.23
107 rdf:rest N8cdddb44cdeb411ca725fe5fd89dff83
108 N78189ced19d349d1a45a5bed27ce91f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Delayed-Action Preparations
110 rdf:type schema:DefinedTerm
111 N8cdddb44cdeb411ca725fe5fd89dff83 rdf:first Nd18c80dd29f44532a205c106005f030c
112 rdf:rest rdf:nil
113 N99c363c7c6e74f5aacb242cb6ddf8a10 schema:name pubmed_id
114 schema:value 11205731
115 rdf:type schema:PropertyValue
116 N9f6af481cc0948bea94d8064d4e59695 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Cellulose
118 rdf:type schema:DefinedTerm
119 Na7e0d52ed58e45c28c0f8da9d84316ee schema:name dimensions_id
120 schema:value pub.1000308030
121 rdf:type schema:PropertyValue
122 Nae489fd8396141cca8d25ee6bfaed041 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Models, Chemical
124 rdf:type schema:DefinedTerm
125 Nc654f81265e749c88e5d100e64afa1ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Glycerides
127 rdf:type schema:DefinedTerm
128 Nd18c80dd29f44532a205c106005f030c schema:affiliation grid-institutes:grid.11875.3a
129 schema:familyName Khoh
130 schema:givenName Kean Hock
131 rdf:type schema:Person
132 Nd3734810862f47a6ab167b642d324ce0 schema:volumeNumber 17
133 rdf:type schema:PublicationVolume
134 Nd60378f967bb4ec4853bb755b9d933a6 schema:name doi
135 schema:value 10.1023/a:1007578321803
136 rdf:type schema:PropertyValue
137 Nd6e20140f36541b9bfa3280523ecad45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Neural Networks, Computer
139 rdf:type schema:DefinedTerm
140 Ne2406e71b71649fd8dd4ebf5e0c97a73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Chemistry, Pharmaceutical
142 rdf:type schema:DefinedTerm
143 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
144 schema:name Medical and Health Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
147 schema:name Pharmacology and Pharmaceutical Sciences
148 rdf:type schema:DefinedTerm
149 sg:journal.1094644 schema:issn 0724-8741
150 1573-904X
151 schema:name Pharmaceutical Research
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.01175124131.23 schema:affiliation grid-institutes:grid.11875.3a
155 schema:familyName Quek
156 schema:givenName Siow San
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175124131.23
158 rdf:type schema:Person
159 sg:person.014644360675.43 schema:affiliation grid-institutes:grid.11875.3a
160 schema:familyName Lim
161 schema:givenName Chee Peng
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014644360675.43
163 rdf:type schema:Person
164 sg:person.0610230334.11 schema:affiliation grid-institutes:grid.11875.3a
165 schema:familyName Peh
166 schema:givenName Kok Khiang
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610230334.11
168 rdf:type schema:Person
169 sg:pub.10.1007/978-1-4684-6036-0_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011433912
170 https://doi.org/10.1007/978-1-4684-6036-0_25
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/bf02551274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023250347
173 https://doi.org/10.1007/bf02551274
174 rdf:type schema:CreativeWork
175 sg:pub.10.1023/a:1015843527138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002628904
176 https://doi.org/10.1023/a:1015843527138
177 rdf:type schema:CreativeWork
178 sg:pub.10.1023/a:1016260720218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000414328
179 https://doi.org/10.1023/a:1016260720218
180 rdf:type schema:CreativeWork
181 sg:pub.10.1023/a:1018917128684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028417432
182 https://doi.org/10.1023/a:1018917128684
183 rdf:type schema:CreativeWork
184 grid-institutes:grid.11875.3a schema:alternateName School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia
185 School of Pharmaceutical Sciences, University of Science Malaysia, 11800, Penang, Malaysia
186 schema:name School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia
187 School of Pharmaceutical Sciences, University of Science Malaysia, 11800, Penang, Malaysia
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...