Use of Artificial Neural Networks to Predict Drug Dissolution Profiles and Evaluation of Network Performance Using Similarity Factor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-11

AUTHORS

Kok Khiang Peh, Chee Peng Lim, Siow San Quek, Kean Hock Khoh

ABSTRACT

Purpose. To use artificial neural networks for predicting dissolution profiles of matrix-controlled release theophylline pellet preparation, and to evaluate the network performance by comparing the predicted dissolution profiles with those obtained from physical experiments using similarity factor.Methods. The Multi-Layered Perceptron (MLP) neural network was used to predict the dissolution profiles of theophylline pellets containing different ratios of microcrystalline cellulose (MCC) and glyceryl monostearate (GMS). The concepts of leave-one-out as well as a time-point by time-point estimation basis were used to predict the rate of drug release for each matrix ratio. All the data were used for training, except for one set which was selected to compare with the predicted output. The closeness between the predicted and the reference dissolution profiles was investigated using similarity factor (f2).Results. The f2 values were all above 60, indicating that the predicted dissolution profiles were closely similar to the dissolution profiles obtained from physical experiments.Conclusion. The MLP network could be used as a model for predicting the dissolution profiles of matrix-controlled release theophylline pellet preparation in product development. More... »

PAGES

1384-1389

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1007578321803

DOI

http://dx.doi.org/10.1023/a:1007578321803

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000308030

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11205731


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cellulose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemistry, Pharmaceutical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Delayed-Action Preparations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Excipients", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycerides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks, Computer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Solubility", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Theophylline", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Pharmaceutical Sciences, University of Science Malaysia, 11800, Penang, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11875.3a", 
          "name": [
            "School of Pharmaceutical Sciences, University of Science Malaysia, 11800, Penang, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peh", 
        "givenName": "Kok Khiang", 
        "id": "sg:person.0610230334.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610230334.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11875.3a", 
          "name": [
            "School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Chee Peng", 
        "id": "sg:person.014644360675.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014644360675.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11875.3a", 
          "name": [
            "School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quek", 
        "givenName": "Siow San", 
        "id": "sg:person.01175124131.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175124131.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11875.3a", 
          "name": [
            "School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khoh", 
        "givenName": "Kean Hock", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02551274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023250347", 
          "https://doi.org/10.1007/bf02551274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018917128684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028417432", 
          "https://doi.org/10.1023/a:1018917128684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015843527138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002628904", 
          "https://doi.org/10.1023/a:1015843527138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016260720218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000414328", 
          "https://doi.org/10.1023/a:1016260720218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-6036-0_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011433912", 
          "https://doi.org/10.1007/978-1-4684-6036-0_25"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-11", 
    "datePublishedReg": "2000-11-01", 
    "description": "Purpose. To use artificial neural networks for predicting dissolution profiles of matrix-controlled release theophylline pellet preparation, and to evaluate the network performance by comparing the predicted dissolution profiles with those obtained from physical experiments using similarity factor.Methods. The Multi-Layered Perceptron (MLP) neural network was used to predict the dissolution profiles of theophylline pellets containing different ratios of microcrystalline cellulose (MCC) and glyceryl monostearate (GMS). The concepts of leave-one-out as well as a time-point by time-point estimation basis were used to predict the rate of drug release for each matrix ratio. All the data were used for training, except for one set which was selected to compare with the predicted output. The closeness between the predicted and the reference dissolution profiles was investigated using similarity factor (f2).Results. The f2 values were all above 60, indicating that the predicted dissolution profiles were closely similar to the dissolution profiles obtained from physical experiments.Conclusion. The MLP network could be used as a model for predicting the dissolution profiles of matrix-controlled release theophylline pellet preparation in product development.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1007578321803", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094644", 
        "issn": [
          "0724-8741", 
          "1573-904X"
        ], 
        "name": "Pharmaceutical Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "artificial neural network", 
      "neural network", 
      "multi-layered perceptron neural network", 
      "perceptron neural network", 
      "network performance", 
      "MLP network", 
      "network", 
      "similarity factor", 
      "physical experiments", 
      "product development", 
      "one-out", 
      "estimation basis", 
      "set", 
      "performance", 
      "experiments", 
      "concept", 
      "training", 
      "output", 
      "model", 
      "drug dissolution profiles", 
      "data", 
      "closeness", 
      "evaluation", 
      "use", 
      "development", 
      "dissolution profiles", 
      "basis", 
      "glyceryl monostearate", 
      "pellet preparation", 
      "microcrystalline cellulose", 
      "drug release", 
      "theophylline pellets", 
      "values", 
      "profile", 
      "factors", 
      "rate", 
      "different ratios", 
      "preparation", 
      "F2 values", 
      "ratio", 
      "monostearate", 
      "cellulose", 
      "matrix ratio", 
      "release", 
      "pellets"
    ], 
    "name": "Use of Artificial Neural Networks to Predict Drug Dissolution Profiles and Evaluation of Network Performance Using Similarity Factor", 
    "pagination": "1384-1389", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000308030"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1007578321803"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11205731"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1007578321803", 
      "https://app.dimensions.ai/details/publication/pub.1000308030"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_319.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1007578321803"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1007578321803'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1007578321803'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1007578321803'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1007578321803'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      86 URIs      73 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1007578321803 schema:about N34d001e683004b80a6d84bda9b58c207
2 N55b7bedab51c435c8e85970ee80d7911
3 N96e9efc2e32c4fb0949881875f02a67b
4 N9807f4a52c074d59a33371189cbf18e6
5 N9861221f15bd43d381be8532b56afe17
6 Na7555b91a066458da41f04afa92de43c
7 Nb1b5a9f9bafb4390880ffa60426d9d18
8 Nd3fb2ae25c684edba7366d1c461a8ff8
9 Nf253adba47204eed99ed00aea7293194
10 Nf9ba49bc5d314104902d0ad8b16f037a
11 anzsrc-for:11
12 anzsrc-for:1115
13 schema:author N0bde96428d2a49e5a6958457d57aa5de
14 schema:citation sg:pub.10.1007/978-1-4684-6036-0_25
15 sg:pub.10.1007/bf02551274
16 sg:pub.10.1023/a:1015843527138
17 sg:pub.10.1023/a:1016260720218
18 sg:pub.10.1023/a:1018917128684
19 schema:datePublished 2000-11
20 schema:datePublishedReg 2000-11-01
21 schema:description Purpose. To use artificial neural networks for predicting dissolution profiles of matrix-controlled release theophylline pellet preparation, and to evaluate the network performance by comparing the predicted dissolution profiles with those obtained from physical experiments using similarity factor.Methods. The Multi-Layered Perceptron (MLP) neural network was used to predict the dissolution profiles of theophylline pellets containing different ratios of microcrystalline cellulose (MCC) and glyceryl monostearate (GMS). The concepts of leave-one-out as well as a time-point by time-point estimation basis were used to predict the rate of drug release for each matrix ratio. All the data were used for training, except for one set which was selected to compare with the predicted output. The closeness between the predicted and the reference dissolution profiles was investigated using similarity factor (f2).Results. The f2 values were all above 60, indicating that the predicted dissolution profiles were closely similar to the dissolution profiles obtained from physical experiments.Conclusion. The MLP network could be used as a model for predicting the dissolution profiles of matrix-controlled release theophylline pellet preparation in product development.
22 schema:genre article
23 schema:isAccessibleForFree false
24 schema:isPartOf N471a954b24c54faf9429da3f57b30d96
25 N6397f215b3084a46bf77c40c54fafd41
26 sg:journal.1094644
27 schema:keywords F2 values
28 MLP network
29 artificial neural network
30 basis
31 cellulose
32 closeness
33 concept
34 data
35 development
36 different ratios
37 dissolution profiles
38 drug dissolution profiles
39 drug release
40 estimation basis
41 evaluation
42 experiments
43 factors
44 glyceryl monostearate
45 matrix ratio
46 microcrystalline cellulose
47 model
48 monostearate
49 multi-layered perceptron neural network
50 network
51 network performance
52 neural network
53 one-out
54 output
55 pellet preparation
56 pellets
57 perceptron neural network
58 performance
59 physical experiments
60 preparation
61 product development
62 profile
63 rate
64 ratio
65 release
66 set
67 similarity factor
68 theophylline pellets
69 training
70 use
71 values
72 schema:name Use of Artificial Neural Networks to Predict Drug Dissolution Profiles and Evaluation of Network Performance Using Similarity Factor
73 schema:pagination 1384-1389
74 schema:productId N54202fbf669a4b898cde4a3dc25ec138
75 N814f9357503a4ce889f87d0b1eadbe27
76 Naed7adf3c1ab427ab4248ebd7b51b2a6
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000308030
78 https://doi.org/10.1023/a:1007578321803
79 schema:sdDatePublished 2022-08-04T16:54
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Naca5d3ebe395457c85ed0d8566f70520
82 schema:url https://doi.org/10.1023/a:1007578321803
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N0bde96428d2a49e5a6958457d57aa5de rdf:first sg:person.0610230334.11
87 rdf:rest N1f5f12a0c38440208294f0349df5736f
88 N1f5f12a0c38440208294f0349df5736f rdf:first sg:person.014644360675.43
89 rdf:rest N9083b0f80021456db5786b1973d6a3ce
90 N34d001e683004b80a6d84bda9b58c207 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Glycerides
92 rdf:type schema:DefinedTerm
93 N3767973b06ac4aabbc2736abd8f3f6b7 rdf:first N439dc4ea0fd1404a81527bd3e23ea289
94 rdf:rest rdf:nil
95 N439dc4ea0fd1404a81527bd3e23ea289 schema:affiliation grid-institutes:grid.11875.3a
96 schema:familyName Khoh
97 schema:givenName Kean Hock
98 rdf:type schema:Person
99 N471a954b24c54faf9429da3f57b30d96 schema:issueNumber 11
100 rdf:type schema:PublicationIssue
101 N54202fbf669a4b898cde4a3dc25ec138 schema:name dimensions_id
102 schema:value pub.1000308030
103 rdf:type schema:PropertyValue
104 N55b7bedab51c435c8e85970ee80d7911 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Solubility
106 rdf:type schema:DefinedTerm
107 N6397f215b3084a46bf77c40c54fafd41 schema:volumeNumber 17
108 rdf:type schema:PublicationVolume
109 N814f9357503a4ce889f87d0b1eadbe27 schema:name pubmed_id
110 schema:value 11205731
111 rdf:type schema:PropertyValue
112 N9083b0f80021456db5786b1973d6a3ce rdf:first sg:person.01175124131.23
113 rdf:rest N3767973b06ac4aabbc2736abd8f3f6b7
114 N96e9efc2e32c4fb0949881875f02a67b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Chemistry, Pharmaceutical
116 rdf:type schema:DefinedTerm
117 N9807f4a52c074d59a33371189cbf18e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Excipients
119 rdf:type schema:DefinedTerm
120 N9861221f15bd43d381be8532b56afe17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Cellulose
122 rdf:type schema:DefinedTerm
123 Na7555b91a066458da41f04afa92de43c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Theophylline
125 rdf:type schema:DefinedTerm
126 Naca5d3ebe395457c85ed0d8566f70520 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 Naed7adf3c1ab427ab4248ebd7b51b2a6 schema:name doi
129 schema:value 10.1023/a:1007578321803
130 rdf:type schema:PropertyValue
131 Nb1b5a9f9bafb4390880ffa60426d9d18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Kinetics
133 rdf:type schema:DefinedTerm
134 Nd3fb2ae25c684edba7366d1c461a8ff8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Models, Chemical
136 rdf:type schema:DefinedTerm
137 Nf253adba47204eed99ed00aea7293194 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Neural Networks, Computer
139 rdf:type schema:DefinedTerm
140 Nf9ba49bc5d314104902d0ad8b16f037a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Delayed-Action Preparations
142 rdf:type schema:DefinedTerm
143 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
144 schema:name Medical and Health Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
147 schema:name Pharmacology and Pharmaceutical Sciences
148 rdf:type schema:DefinedTerm
149 sg:journal.1094644 schema:issn 0724-8741
150 1573-904X
151 schema:name Pharmaceutical Research
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.01175124131.23 schema:affiliation grid-institutes:grid.11875.3a
155 schema:familyName Quek
156 schema:givenName Siow San
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175124131.23
158 rdf:type schema:Person
159 sg:person.014644360675.43 schema:affiliation grid-institutes:grid.11875.3a
160 schema:familyName Lim
161 schema:givenName Chee Peng
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014644360675.43
163 rdf:type schema:Person
164 sg:person.0610230334.11 schema:affiliation grid-institutes:grid.11875.3a
165 schema:familyName Peh
166 schema:givenName Kok Khiang
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610230334.11
168 rdf:type schema:Person
169 sg:pub.10.1007/978-1-4684-6036-0_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011433912
170 https://doi.org/10.1007/978-1-4684-6036-0_25
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/bf02551274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023250347
173 https://doi.org/10.1007/bf02551274
174 rdf:type schema:CreativeWork
175 sg:pub.10.1023/a:1015843527138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002628904
176 https://doi.org/10.1023/a:1015843527138
177 rdf:type schema:CreativeWork
178 sg:pub.10.1023/a:1016260720218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000414328
179 https://doi.org/10.1023/a:1016260720218
180 rdf:type schema:CreativeWork
181 sg:pub.10.1023/a:1018917128684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028417432
182 https://doi.org/10.1023/a:1018917128684
183 rdf:type schema:CreativeWork
184 grid-institutes:grid.11875.3a schema:alternateName School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia
185 School of Pharmaceutical Sciences, University of Science Malaysia, 11800, Penang, Malaysia
186 schema:name School of Industrial Technology, University of Science Malaysia, 11800, Penang, Malaysia
187 School of Pharmaceutical Sciences, University of Science Malaysia, 11800, Penang, Malaysia
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...