Spatial autocorrelation of cancer in Western Europe View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-01

AUTHORS

Michael S. Rosenberg, Robert R. Sokal, Neal L. Oden, Donna DiGiovanni

ABSTRACT

We applied the techniques of spatial autocorrelation (SA) analysis to 40 cancer mortality distributions in Western Europe. One of the aims of these methods is to describe the scale over which spatial patterns of mortalities occur, which may provide suggestions concerning the agents bringing about the patterns. We analyzed 355 registration areas, applying one- and two-dimensional SA as well as local SA techniques. We find that cancer mortalities are unusually strongly spatially structured, implying similar spatial structuring of the responsible agents. The small number of spatial patterns (4 or 5) in the 40 cancer mortalities suggests there are fewer spatially patterned agents than the number of cancers studied. SA present in variables will bias the results of conventional statistical tests applied to them. After correcting for such bias, some pairwise correlations of cancer mortality distributions remain significant, suggesting inherent, epidemiologically meaningful correlations. Local SA is a useful technique for exploring epidemiological maps. It found homogeneous high overall cancer mortalities in Denmark and homogeneous low mortalities in southern Italy, as well as a very heterogeneous pattern for ovarian cancer in Ireland. More... »

PAGES

15-22

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1007559728848

DOI

http://dx.doi.org/10.1023/a:1007559728848

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000586847

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10098991


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Europe", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ovarian Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosenberg", 
        "givenName": "Michael S.", 
        "id": "sg:person.0727137743.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727137743.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sokal", 
        "givenName": "Robert R.", 
        "id": "sg:person.01305517101.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305517101.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The EMMES Corporation, Potomac, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.280434.9", 
          "name": [
            "The EMMES Corporation, Potomac, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oden", 
        "givenName": "Neal L.", 
        "id": "sg:person.01025142664.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025142664.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, State University of New York at Stony Brook, Stony Brook, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Neurology, State University of New York at Stony Brook, Stony Brook, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DiGiovanni", 
        "givenName": "Donna", 
        "id": "sg:person.0604354212.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604354212.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00120648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011163776", 
          "https://doi.org/10.1007/bf00120648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01908075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022323983", 
          "https://doi.org/10.1007/bf01908075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00384935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028264183", 
          "https://doi.org/10.1007/bf00384935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00056481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026953818", 
          "https://doi.org/10.1007/bf00056481"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-01", 
    "datePublishedReg": "1999-01-01", 
    "description": "We applied the techniques of spatial autocorrelation (SA) analysis to 40 cancer mortality distributions in Western Europe. One of the aims of these methods is to describe the scale over which spatial patterns of mortalities occur, which may provide suggestions concerning the agents bringing about the patterns. We analyzed 355 registration areas, applying one- and two-dimensional SA as well as local SA techniques. We find that cancer mortalities are unusually strongly spatially structured, implying similar spatial structuring of the responsible agents. The small number of spatial patterns (4 or 5) in the 40 cancer mortalities suggests there are fewer spatially patterned agents than the number of cancers studied. SA present in variables will bias the results of conventional statistical tests applied to them. After correcting for such bias, some pairwise correlations of cancer mortality distributions remain significant, suggesting inherent, epidemiologically meaningful correlations. Local SA is a useful technique for exploring epidemiological maps. It found homogeneous high overall cancer mortalities in Denmark and homogeneous low mortalities in southern Italy, as well as a very heterogeneous pattern for ovarian cancer in Ireland.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1007559728848", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095636", 
        "issn": [
          "0393-2990", 
          "1573-7284"
        ], 
        "name": "European Journal of Epidemiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "cancer mortality", 
      "cancer mortality distribution", 
      "overall cancer mortality", 
      "number of cancers", 
      "ovarian cancer", 
      "lower mortality", 
      "mortality distribution", 
      "mortality", 
      "epidemiological maps", 
      "cancer", 
      "heterogeneous pattern", 
      "responsible agent", 
      "agents", 
      "meaningful correlation", 
      "useful technique", 
      "registration area", 
      "small number", 
      "SA present", 
      "correlation", 
      "patterns", 
      "aim", 
      "statistical tests", 
      "pairwise correlations", 
      "number", 
      "SA", 
      "Denmark", 
      "test", 
      "conventional statistical tests", 
      "southern Italy", 
      "such bias", 
      "technique", 
      "variables", 
      "Western Europe", 
      "bias", 
      "present", 
      "area", 
      "Italy", 
      "analysis", 
      "scale", 
      "SA technique", 
      "results", 
      "Europe", 
      "Ireland", 
      "suggestions", 
      "distribution", 
      "method", 
      "local SA", 
      "spatial patterns", 
      "autocorrelation analysis", 
      "maps", 
      "spatial autocorrelation analysis", 
      "spatial autocorrelation", 
      "autocorrelation", 
      "structuring", 
      "spatial structuring", 
      "two-dimensional SA", 
      "local SA techniques", 
      "similar spatial structuring", 
      "homogeneous high overall cancer mortalities", 
      "high overall cancer mortalities", 
      "homogeneous low mortalities"
    ], 
    "name": "Spatial autocorrelation of cancer in Western Europe", 
    "pagination": "15-22", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000586847"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1007559728848"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10098991"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1007559728848", 
      "https://app.dimensions.ai/details/publication/pub.1000586847"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_339.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1007559728848"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1007559728848'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1007559728848'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1007559728848'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1007559728848'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      22 PREDICATES      99 URIs      87 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1007559728848 schema:about N05759357c28842888ed9a04ead2ccf4f
2 N24bdd4a75a5c41719395628704823523
3 N327c67d6a46e4cf18f1754e26c085d4e
4 N6291a91caebb45acb9ae1e9476de27eb
5 N7250c82f10444d8eb70ab67e1ff09fd7
6 N7c9ff26c80f542eaa033903867097f98
7 Nb46eb063cf724ba09da497c34f25750c
8 anzsrc-for:11
9 anzsrc-for:1112
10 schema:author N624f0bf64f004b8d86c0c1436a377d32
11 schema:citation sg:pub.10.1007/bf00056481
12 sg:pub.10.1007/bf00120648
13 sg:pub.10.1007/bf00384935
14 sg:pub.10.1007/bf01908075
15 schema:datePublished 1999-01
16 schema:datePublishedReg 1999-01-01
17 schema:description We applied the techniques of spatial autocorrelation (SA) analysis to 40 cancer mortality distributions in Western Europe. One of the aims of these methods is to describe the scale over which spatial patterns of mortalities occur, which may provide suggestions concerning the agents bringing about the patterns. We analyzed 355 registration areas, applying one- and two-dimensional SA as well as local SA techniques. We find that cancer mortalities are unusually strongly spatially structured, implying similar spatial structuring of the responsible agents. The small number of spatial patterns (4 or 5) in the 40 cancer mortalities suggests there are fewer spatially patterned agents than the number of cancers studied. SA present in variables will bias the results of conventional statistical tests applied to them. After correcting for such bias, some pairwise correlations of cancer mortality distributions remain significant, suggesting inherent, epidemiologically meaningful correlations. Local SA is a useful technique for exploring epidemiological maps. It found homogeneous high overall cancer mortalities in Denmark and homogeneous low mortalities in southern Italy, as well as a very heterogeneous pattern for ovarian cancer in Ireland.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N172ba94235304dbfa1e621c397594710
22 N5e0177e716eb465a9efd763692475217
23 sg:journal.1095636
24 schema:keywords Denmark
25 Europe
26 Ireland
27 Italy
28 SA
29 SA present
30 SA technique
31 Western Europe
32 agents
33 aim
34 analysis
35 area
36 autocorrelation
37 autocorrelation analysis
38 bias
39 cancer
40 cancer mortality
41 cancer mortality distribution
42 conventional statistical tests
43 correlation
44 distribution
45 epidemiological maps
46 heterogeneous pattern
47 high overall cancer mortalities
48 homogeneous high overall cancer mortalities
49 homogeneous low mortalities
50 local SA
51 local SA techniques
52 lower mortality
53 maps
54 meaningful correlation
55 method
56 mortality
57 mortality distribution
58 number
59 number of cancers
60 ovarian cancer
61 overall cancer mortality
62 pairwise correlations
63 patterns
64 present
65 registration area
66 responsible agent
67 results
68 scale
69 similar spatial structuring
70 small number
71 southern Italy
72 spatial autocorrelation
73 spatial autocorrelation analysis
74 spatial patterns
75 spatial structuring
76 statistical tests
77 structuring
78 such bias
79 suggestions
80 technique
81 test
82 two-dimensional SA
83 useful technique
84 variables
85 schema:name Spatial autocorrelation of cancer in Western Europe
86 schema:pagination 15-22
87 schema:productId N84bf8578f2a94db596c5b897548f5b63
88 Nc4f0e97c70874c4499f79bc672c843d5
89 Nc748cc41c36d40d7b358b4fc01a0eae5
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000586847
91 https://doi.org/10.1023/a:1007559728848
92 schema:sdDatePublished 2021-11-01T18:05
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher Nbed3d2273ad54f139e4de14e19ed968b
95 schema:url https://doi.org/10.1023/a:1007559728848
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N05759357c28842888ed9a04ead2ccf4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Ovarian Neoplasms
101 rdf:type schema:DefinedTerm
102 N172ba94235304dbfa1e621c397594710 schema:volumeNumber 15
103 rdf:type schema:PublicationVolume
104 N24bdd4a75a5c41719395628704823523 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Male
106 rdf:type schema:DefinedTerm
107 N327c67d6a46e4cf18f1754e26c085d4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Cluster Analysis
109 rdf:type schema:DefinedTerm
110 N34b563f99ae046078933b930c5e11141 rdf:first sg:person.01305517101.00
111 rdf:rest Na81ea99eb3de48fba3a323a27995272c
112 N5e0177e716eb465a9efd763692475217 schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 N624f0bf64f004b8d86c0c1436a377d32 rdf:first sg:person.0727137743.89
115 rdf:rest N34b563f99ae046078933b930c5e11141
116 N6291a91caebb45acb9ae1e9476de27eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Female
118 rdf:type schema:DefinedTerm
119 N7250c82f10444d8eb70ab67e1ff09fd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Neoplasms
121 rdf:type schema:DefinedTerm
122 N7c9ff26c80f542eaa033903867097f98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Europe
124 rdf:type schema:DefinedTerm
125 N84bf8578f2a94db596c5b897548f5b63 schema:name pubmed_id
126 schema:value 10098991
127 rdf:type schema:PropertyValue
128 N961d34776a98425398be7e2c224e986c rdf:first sg:person.0604354212.66
129 rdf:rest rdf:nil
130 Na81ea99eb3de48fba3a323a27995272c rdf:first sg:person.01025142664.99
131 rdf:rest N961d34776a98425398be7e2c224e986c
132 Nb46eb063cf724ba09da497c34f25750c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Humans
134 rdf:type schema:DefinedTerm
135 Nbed3d2273ad54f139e4de14e19ed968b schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 Nc4f0e97c70874c4499f79bc672c843d5 schema:name doi
138 schema:value 10.1023/a:1007559728848
139 rdf:type schema:PropertyValue
140 Nc748cc41c36d40d7b358b4fc01a0eae5 schema:name dimensions_id
141 schema:value pub.1000586847
142 rdf:type schema:PropertyValue
143 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
144 schema:name Medical and Health Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
147 schema:name Oncology and Carcinogenesis
148 rdf:type schema:DefinedTerm
149 sg:journal.1095636 schema:issn 0393-2990
150 1573-7284
151 schema:name European Journal of Epidemiology
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.01025142664.99 schema:affiliation grid-institutes:grid.280434.9
155 schema:familyName Oden
156 schema:givenName Neal L.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025142664.99
158 rdf:type schema:Person
159 sg:person.01305517101.00 schema:affiliation grid-institutes:grid.36425.36
160 schema:familyName Sokal
161 schema:givenName Robert R.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305517101.00
163 rdf:type schema:Person
164 sg:person.0604354212.66 schema:affiliation grid-institutes:grid.36425.36
165 schema:familyName DiGiovanni
166 schema:givenName Donna
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604354212.66
168 rdf:type schema:Person
169 sg:person.0727137743.89 schema:affiliation grid-institutes:grid.36425.36
170 schema:familyName Rosenberg
171 schema:givenName Michael S.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727137743.89
173 rdf:type schema:Person
174 sg:pub.10.1007/bf00056481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026953818
175 https://doi.org/10.1007/bf00056481
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/bf00120648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011163776
178 https://doi.org/10.1007/bf00120648
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/bf00384935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028264183
181 https://doi.org/10.1007/bf00384935
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/bf01908075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022323983
184 https://doi.org/10.1007/bf01908075
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.280434.9 schema:alternateName The EMMES Corporation, Potomac, Maryland, USA
187 schema:name The EMMES Corporation, Potomac, Maryland, USA
188 rdf:type schema:Organization
189 grid-institutes:grid.36425.36 schema:alternateName Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York, USA
190 Department of Neurology, State University of New York at Stony Brook, Stony Brook, New York, USA
191 schema:name Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York, USA
192 Department of Neurology, State University of New York at Stony Brook, Stony Brook, New York, USA
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...