Methodological problems and the role of statistics in cluster response studies: A framework View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-10

AUTHORS

P.K.M. Quataert, B. Armstrong, A. Berghold, F. Bianchi, A. Kelly, M. Marchi, M. Martuzzi, A. Rosano

ABSTRACT

More and more citizens urge public health authorities to investigate reports of disease excess in their neighbourhood. These environmental concerns are legitimate and it is part of good public health practice to respond to these complaints. However, the methodological and practical problems are severe and a lot of controversy exists about the usefulness of these investigations. To clarify the possibilities and limitations in this situation, this paper proposes a typology of cluster studies. According to this framework, cluster response is distinguished from two other types of cluster studies: Cluster monitoring, screening proactively for clusters to act as an early warning system, and cluster research, scrutinizing clustering to generate and test aetiological hypotheses. To each of these three types of cluster studies corresponds a different public health context; respectively public health action, public health surveillance and public health research. Probably, part of the controversy mentioned stems from not acknowledging sufficiently the corresponding intrinsic differences in rationality and practical constraints. Cluster response is crisis management and not scientific research. In a relatively short time, an informed decision should be taken by a multidisciplinary team of experts using readily available information and knowledge. In accordance with this point of view, cluster reports should be handled stepwise and the role of statistics is to quantify a cluster exploring different points of view as an input to the decision process. More... »

PAGES

821-831

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1007537813282

DOI

http://dx.doi.org/10.1023/a:1007537813282

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036654022

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10608362


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Making, Organizational", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epidemiologic Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Screening", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Care Team", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Surveillance", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "EUROCAT, Central Registry, Brussels, Belgium", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "EUROCAT, Central Registry, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quataert", 
        "givenName": "P.K.M.", 
        "id": "sg:person.0771550506.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771550506.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London School of Hygiene and Tropical Medicine, U.K", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "London School of Hygiene and Tropical Medicine, U.K"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Armstrong", 
        "givenName": "B.", 
        "id": "sg:person.016212557162.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016212557162.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "EUROCAT registry, Styria, Austria", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "EUROCAT registry, Styria, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berghold", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "EUROCAT registry Florence and CNR Institute of Clinical Physiology, Pisa, Italy", 
          "id": "http://www.grid.ac/institutes/grid.418529.3", 
          "name": [
            "EUROCAT registry Florence and CNR Institute of Clinical Physiology, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bianchi", 
        "givenName": "F.", 
        "id": "sg:person.01307637166.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307637166.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Trinity College, Dublin, Ireland", 
          "id": "http://www.grid.ac/institutes/grid.8217.c", 
          "name": [
            "Trinity College, Dublin, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kelly", 
        "givenName": "A.", 
        "id": "sg:person.0761515654.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761515654.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florence, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "University of Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marchi", 
        "givenName": "M.", 
        "id": "sg:person.0765577624.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765577624.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IARC, Lyon, France", 
          "id": "http://www.grid.ac/institutes/grid.17703.32", 
          "name": [
            "IARC, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martuzzi", 
        "givenName": "M.", 
        "id": "sg:person.01274273666.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274273666.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Centre for Birth Defects (ICBD), Rome, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "International Centre for Birth Defects (ICBD), Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosano", 
        "givenName": "A.", 
        "id": "sg:person.0772664414.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772664414.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/bjc.1996.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018064955", 
          "https://doi.org/10.1038/bjc.1996.122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007569831029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034656428", 
          "https://doi.org/10.1023/a:1007569831029"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-10", 
    "datePublishedReg": "1999-10-01", 
    "description": "More and more citizens urge public health authorities to investigate reports of disease excess in their neighbourhood. These environmental concerns are legitimate and it is part of good public health practice to respond to these complaints. However, the methodological and practical problems are severe and a lot of controversy exists about the usefulness of these investigations. To clarify the possibilities and limitations in this situation, this paper proposes a typology of cluster studies. According to this framework, cluster response is distinguished from two other types of cluster studies: Cluster monitoring, screening proactively for clusters to act as an early warning system, and cluster research, scrutinizing clustering to generate and test aetiological hypotheses. To each of these three types of cluster studies corresponds a different public health context; respectively public health action, public health surveillance and public health research. Probably, part of the controversy mentioned stems from not acknowledging sufficiently the corresponding intrinsic differences in rationality and practical constraints. Cluster response is crisis management and not scientific research. In a relatively short time, an informed decision should be taken by a multidisciplinary team of experts using readily available information and knowledge. In accordance with this point of view, cluster reports should be handled stepwise and the role of statistics is to quantify a cluster exploring different points of view as an input to the decision process.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1007537813282", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095636", 
        "issn": [
          "0393-2990", 
          "1573-7284"
        ], 
        "name": "European Journal of Epidemiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "public health action", 
      "public health authorities", 
      "good public health practice", 
      "public health surveillance", 
      "public health practice", 
      "aetiological hypotheses", 
      "multidisciplinary team", 
      "health action", 
      "public health context", 
      "public health research", 
      "health authorities", 
      "health surveillance", 
      "health practices", 
      "health research", 
      "disease excess", 
      "health context", 
      "cluster reports", 
      "response studies", 
      "report", 
      "study", 
      "complaints", 
      "response", 
      "intrinsic differences", 
      "controversy", 
      "informed decisions", 
      "surveillance", 
      "role", 
      "methodological problems", 
      "cluster response", 
      "available information", 
      "management", 
      "cluster research", 
      "short time", 
      "differences", 
      "action", 
      "team", 
      "types", 
      "usefulness", 
      "hypothesis", 
      "monitoring", 
      "practice", 
      "research", 
      "part", 
      "concern", 
      "statistics", 
      "time", 
      "knowledge", 
      "excess", 
      "investigation", 
      "stepwise", 
      "point", 
      "experts", 
      "limitations", 
      "early warning system", 
      "possibility", 
      "cluster studies", 
      "accordance", 
      "view", 
      "information", 
      "decisions", 
      "different points", 
      "clusters", 
      "situation", 
      "problem", 
      "scientific research", 
      "warning system", 
      "system", 
      "context", 
      "input", 
      "authorities", 
      "process", 
      "generate", 
      "neighborhood", 
      "point of view", 
      "crisis management", 
      "decision process", 
      "practical problems", 
      "more citizens", 
      "practical constraints", 
      "cluster monitoring", 
      "typology", 
      "framework", 
      "citizens", 
      "paper", 
      "constraints", 
      "role of statistics", 
      "environmental concerns", 
      "rationality", 
      "different public health context", 
      "corresponding intrinsic differences", 
      "cluster response studies"
    ], 
    "name": "Methodological problems and the role of statistics in cluster response studies: A framework", 
    "pagination": "821-831", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036654022"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1007537813282"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10608362"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1007537813282", 
      "https://app.dimensions.ai/details/publication/pub.1036654022"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_319.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1007537813282"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1007537813282'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1007537813282'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1007537813282'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1007537813282'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      22 PREDICATES      129 URIs      119 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1007537813282 schema:about N12dae7ec3e2c4bbfae9e5e6b75c65359
2 N384c25a4db84476e94deaf82c5e2262c
3 N3cdc9e32858541828f24d6d1e954fd0e
4 N6bfc8c45f6ad4b978fae23ad5acb2051
5 N8a72f79d7460492c837664e9c785aaad
6 Nb12a8cb47f5b417a88358e674b235fe0
7 Nb32bdfeab9ff4db8b216117ea00f93c1
8 Nd387b55f6edf489f96fb4e5db099ec53
9 Nf4eb898ace3f4cdd9743d82458b3fe60
10 anzsrc-for:11
11 anzsrc-for:1117
12 schema:author Ndcfeac3e8c424c9d9adb67a3976e1d07
13 schema:citation sg:pub.10.1023/a:1007569831029
14 sg:pub.10.1038/bjc.1996.122
15 schema:datePublished 1999-10
16 schema:datePublishedReg 1999-10-01
17 schema:description More and more citizens urge public health authorities to investigate reports of disease excess in their neighbourhood. These environmental concerns are legitimate and it is part of good public health practice to respond to these complaints. However, the methodological and practical problems are severe and a lot of controversy exists about the usefulness of these investigations. To clarify the possibilities and limitations in this situation, this paper proposes a typology of cluster studies. According to this framework, cluster response is distinguished from two other types of cluster studies: Cluster monitoring, screening proactively for clusters to act as an early warning system, and cluster research, scrutinizing clustering to generate and test aetiological hypotheses. To each of these three types of cluster studies corresponds a different public health context; respectively public health action, public health surveillance and public health research. Probably, part of the controversy mentioned stems from not acknowledging sufficiently the corresponding intrinsic differences in rationality and practical constraints. Cluster response is crisis management and not scientific research. In a relatively short time, an informed decision should be taken by a multidisciplinary team of experts using readily available information and knowledge. In accordance with this point of view, cluster reports should be handled stepwise and the role of statistics is to quantify a cluster exploring different points of view as an input to the decision process.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N2047df3b85fd435fad386075226aaff5
22 Ne436a4b9fc7845d3826bccfedac5d28f
23 sg:journal.1095636
24 schema:keywords accordance
25 action
26 aetiological hypotheses
27 authorities
28 available information
29 citizens
30 cluster monitoring
31 cluster reports
32 cluster research
33 cluster response
34 cluster response studies
35 cluster studies
36 clusters
37 complaints
38 concern
39 constraints
40 context
41 controversy
42 corresponding intrinsic differences
43 crisis management
44 decision process
45 decisions
46 differences
47 different points
48 different public health context
49 disease excess
50 early warning system
51 environmental concerns
52 excess
53 experts
54 framework
55 generate
56 good public health practice
57 health action
58 health authorities
59 health context
60 health practices
61 health research
62 health surveillance
63 hypothesis
64 information
65 informed decisions
66 input
67 intrinsic differences
68 investigation
69 knowledge
70 limitations
71 management
72 methodological problems
73 monitoring
74 more citizens
75 multidisciplinary team
76 neighborhood
77 paper
78 part
79 point
80 point of view
81 possibility
82 practical constraints
83 practical problems
84 practice
85 problem
86 process
87 public health action
88 public health authorities
89 public health context
90 public health practice
91 public health research
92 public health surveillance
93 rationality
94 report
95 research
96 response
97 response studies
98 role
99 role of statistics
100 scientific research
101 short time
102 situation
103 statistics
104 stepwise
105 study
106 surveillance
107 system
108 team
109 time
110 types
111 typology
112 usefulness
113 view
114 warning system
115 schema:name Methodological problems and the role of statistics in cluster response studies: A framework
116 schema:pagination 821-831
117 schema:productId N1536288637d541e4b46de4b8ee58896e
118 N280e69eec78943b78a55c80885e9eabc
119 Ne17bb380b8ea48f691ff06375e8463be
120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036654022
121 https://doi.org/10.1023/a:1007537813282
122 schema:sdDatePublished 2022-01-01T18:10
123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
124 schema:sdPublisher N1941d4754bdd4825a19f75910638e8c7
125 schema:url https://doi.org/10.1023/a:1007537813282
126 sgo:license sg:explorer/license/
127 sgo:sdDataset articles
128 rdf:type schema:ScholarlyArticle
129 N12dae7ec3e2c4bbfae9e5e6b75c65359 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Decision Making, Organizational
131 rdf:type schema:DefinedTerm
132 N1347ca249d9c42c49ba3a3a1c736b1a1 rdf:first sg:person.01274273666.81
133 rdf:rest N3b6b592d6636480aa5513c5dada39e4c
134 N1536288637d541e4b46de4b8ee58896e schema:name dimensions_id
135 schema:value pub.1036654022
136 rdf:type schema:PropertyValue
137 N1704d8cce9bc48db9dc9da33f7526092 rdf:first Nc370496a2f6f48f8a5e5abf66dd0cdab
138 rdf:rest N1c27e093bfd241379cb7df5e2c300fdc
139 N1941d4754bdd4825a19f75910638e8c7 schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 N1c27e093bfd241379cb7df5e2c300fdc rdf:first sg:person.01307637166.49
142 rdf:rest N9fd24d5a80b64436806b5b44fb0fe2c7
143 N2047df3b85fd435fad386075226aaff5 schema:issueNumber 9
144 rdf:type schema:PublicationIssue
145 N280e69eec78943b78a55c80885e9eabc schema:name pubmed_id
146 schema:value 10608362
147 rdf:type schema:PropertyValue
148 N384c25a4db84476e94deaf82c5e2262c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Cluster Analysis
150 rdf:type schema:DefinedTerm
151 N3b6b592d6636480aa5513c5dada39e4c rdf:first sg:person.0772664414.80
152 rdf:rest rdf:nil
153 N3cdc9e32858541828f24d6d1e954fd0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Humans
155 rdf:type schema:DefinedTerm
156 N6bfc8c45f6ad4b978fae23ad5acb2051 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Mass Screening
158 rdf:type schema:DefinedTerm
159 N7d75a290db2f45e9ad8e9c5b4a4bddd2 rdf:first sg:person.0765577624.59
160 rdf:rest N1347ca249d9c42c49ba3a3a1c736b1a1
161 N8a72f79d7460492c837664e9c785aaad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Epidemiologic Research Design
163 rdf:type schema:DefinedTerm
164 N8e822bc8c268480fb4a0872d552f3f6a rdf:first sg:person.016212557162.08
165 rdf:rest N1704d8cce9bc48db9dc9da33f7526092
166 N9fd24d5a80b64436806b5b44fb0fe2c7 rdf:first sg:person.0761515654.46
167 rdf:rest N7d75a290db2f45e9ad8e9c5b4a4bddd2
168 Nb12a8cb47f5b417a88358e674b235fe0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Population Surveillance
170 rdf:type schema:DefinedTerm
171 Nb32bdfeab9ff4db8b216117ea00f93c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Patient Care Team
173 rdf:type schema:DefinedTerm
174 Nc370496a2f6f48f8a5e5abf66dd0cdab schema:affiliation grid-institutes:None
175 schema:familyName Berghold
176 schema:givenName A.
177 rdf:type schema:Person
178 Nd387b55f6edf489f96fb4e5db099ec53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Models, Statistical
180 rdf:type schema:DefinedTerm
181 Ndcfeac3e8c424c9d9adb67a3976e1d07 rdf:first sg:person.0771550506.84
182 rdf:rest N8e822bc8c268480fb4a0872d552f3f6a
183 Ne17bb380b8ea48f691ff06375e8463be schema:name doi
184 schema:value 10.1023/a:1007537813282
185 rdf:type schema:PropertyValue
186 Ne436a4b9fc7845d3826bccfedac5d28f schema:volumeNumber 15
187 rdf:type schema:PublicationVolume
188 Nf4eb898ace3f4cdd9743d82458b3fe60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Data Interpretation, Statistical
190 rdf:type schema:DefinedTerm
191 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
192 schema:name Medical and Health Sciences
193 rdf:type schema:DefinedTerm
194 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
195 schema:name Public Health and Health Services
196 rdf:type schema:DefinedTerm
197 sg:journal.1095636 schema:issn 0393-2990
198 1573-7284
199 schema:name European Journal of Epidemiology
200 schema:publisher Springer Nature
201 rdf:type schema:Periodical
202 sg:person.01274273666.81 schema:affiliation grid-institutes:grid.17703.32
203 schema:familyName Martuzzi
204 schema:givenName M.
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274273666.81
206 rdf:type schema:Person
207 sg:person.01307637166.49 schema:affiliation grid-institutes:grid.418529.3
208 schema:familyName Bianchi
209 schema:givenName F.
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307637166.49
211 rdf:type schema:Person
212 sg:person.016212557162.08 schema:affiliation grid-institutes:None
213 schema:familyName Armstrong
214 schema:givenName B.
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016212557162.08
216 rdf:type schema:Person
217 sg:person.0761515654.46 schema:affiliation grid-institutes:grid.8217.c
218 schema:familyName Kelly
219 schema:givenName A.
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761515654.46
221 rdf:type schema:Person
222 sg:person.0765577624.59 schema:affiliation grid-institutes:grid.8404.8
223 schema:familyName Marchi
224 schema:givenName M.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765577624.59
226 rdf:type schema:Person
227 sg:person.0771550506.84 schema:affiliation grid-institutes:None
228 schema:familyName Quataert
229 schema:givenName P.K.M.
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771550506.84
231 rdf:type schema:Person
232 sg:person.0772664414.80 schema:affiliation grid-institutes:None
233 schema:familyName Rosano
234 schema:givenName A.
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772664414.80
236 rdf:type schema:Person
237 sg:pub.10.1023/a:1007569831029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034656428
238 https://doi.org/10.1023/a:1007569831029
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/bjc.1996.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018064955
241 https://doi.org/10.1038/bjc.1996.122
242 rdf:type schema:CreativeWork
243 grid-institutes:None schema:alternateName EUROCAT registry, Styria, Austria
244 EUROCAT, Central Registry, Brussels, Belgium
245 International Centre for Birth Defects (ICBD), Rome, Italy
246 London School of Hygiene and Tropical Medicine, U.K
247 schema:name EUROCAT registry, Styria, Austria
248 EUROCAT, Central Registry, Brussels, Belgium
249 International Centre for Birth Defects (ICBD), Rome, Italy
250 London School of Hygiene and Tropical Medicine, U.K
251 rdf:type schema:Organization
252 grid-institutes:grid.17703.32 schema:alternateName IARC, Lyon, France
253 schema:name IARC, Lyon, France
254 rdf:type schema:Organization
255 grid-institutes:grid.418529.3 schema:alternateName EUROCAT registry Florence and CNR Institute of Clinical Physiology, Pisa, Italy
256 schema:name EUROCAT registry Florence and CNR Institute of Clinical Physiology, Pisa, Italy
257 rdf:type schema:Organization
258 grid-institutes:grid.8217.c schema:alternateName Trinity College, Dublin, Ireland
259 schema:name Trinity College, Dublin, Ireland
260 rdf:type schema:Organization
261 grid-institutes:grid.8404.8 schema:alternateName University of Florence, Italy
262 schema:name University of Florence, Italy
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...