Efficient Approximations for the Marginal Likelihood of Bayesian Networks with Hidden Variables View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1997-11

AUTHORS

David Maxwell Chickering, David Heckerman

ABSTRACT

We discuss Bayesian methods for model averaging and model selection among Bayesian-network models with hidden variables. In particular, we examine large-sample approximations for the marginal likelihood of naive-Bayes models in which the root node is hidden. Such models are useful for clustering or unsupervised learning. We consider a Laplace approximation and the less accurate but more computationally efficient approximation known as the Bayesian Information Criterion (BIC), which is equivalent to Rissanen's (1987) Minimum Description Length (MDL). Also, we consider approximations that ignore some off-diagonal elements of the observed information matrix and an approximation proposed by Cheeseman and Stutz (1995). We evaluate the accuracy of these approximations using a Monte-Carlo gold standard. In experiments with artificial and real examples, we find that (1) none of the approximations are accurate when used for model averaging, (2) all of the approximations, with the exception of BIC/MDL, are accurate for model selection, (3) among the accurate approximations, the Cheeseman–Stutz and Diagonal approximations are the most computationally efficient, (4) all of the approximations, with the exception of BIC/MDL, can be sensitive to the prior distribution over model parameters, and (5) the Cheeseman–Stutz approximation can be more accurate than the other approximations, including the Laplace approximation, in situations where the parameters in the maximum a posteriori configuration are near a boundary. More... »

PAGES

181-212

References to SciGraph publications

  • 1992-10. A Bayesian method for the induction of probabilistic networks from data in MACHINE LEARNING
  • 1995. Latent Class Models in HANDBOOK OF STATISTICAL MODELING FOR THE SOCIAL AND BEHAVIORAL SCIENCES
  • 1995-09. Learning Bayesian networks: The combination of knowledge and statistical data in MACHINE LEARNING
  • Journal

    TITLE

    Machine Learning

    ISSUE

    2-3

    VOLUME

    29

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1007469629108

    DOI

    http://dx.doi.org/10.1023/a:1007469629108

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044802083


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Microsoft (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419815.0", 
              "name": [
                "Microsoft Research, 98052-6399, Redmond, WA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maxwell Chickering", 
            "givenName": "David", 
            "id": "sg:person.011240332636.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011240332636.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Microsoft (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419815.0", 
              "name": [
                "Microsoft Research, 98052-6399, Redmond, WA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heckerman", 
            "givenName": "David", 
            "id": "sg:person.01134362461.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134362461.98"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1162/neco.1992.4.3.448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005836706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1992.4.3.415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016555682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-1-55860-332-5.50009-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020634759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-1292-3_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022719367", 
              "https://doi.org/10.1007/978-1-4899-1292-3_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(91)90074-f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030619715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(91)90074-f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030619715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00994016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035524560", 
              "https://doi.org/10.1007/bf00994016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176344136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044872629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00994110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046316965", 
              "https://doi.org/10.1007/bf00994110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-934613-41-5.50005-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046930152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1991.10475130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1995.10476572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1995.10476592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1995.10476635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/63.3.581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059418581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.286919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.1984.4767596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176350709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064409239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/ss/1177010888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064409646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1403615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069473898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/271063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070072554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1613/jair.251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105538415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1613/jair.62", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105538472"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-11", 
        "datePublishedReg": "1997-11-01", 
        "description": "We discuss Bayesian methods for model averaging and model selection among Bayesian-network models with hidden variables. In particular, we examine large-sample approximations for the marginal likelihood of naive-Bayes models in which the root node is hidden. Such models are useful for clustering or unsupervised learning. We consider a Laplace approximation and the less accurate but more computationally efficient approximation known as the Bayesian Information Criterion (BIC), which is equivalent to Rissanen's (1987) Minimum Description Length (MDL). Also, we consider approximations that ignore some off-diagonal elements of the observed information matrix and an approximation proposed by Cheeseman and Stutz (1995). We evaluate the accuracy of these approximations using a Monte-Carlo gold standard. In experiments with artificial and real examples, we find that (1) none of the approximations are accurate when used for model averaging, (2) all of the approximations, with the exception of BIC/MDL, are accurate for model selection, (3) among the accurate approximations, the Cheeseman\u2013Stutz and Diagonal approximations are the most computationally efficient, (4) all of the approximations, with the exception of BIC/MDL, can be sensitive to the prior distribution over model parameters, and (5) the Cheeseman\u2013Stutz approximation can be more accurate than the other approximations, including the Laplace approximation, in situations where the parameters in the maximum a posteriori configuration are near a boundary.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1007469629108", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1125588", 
            "issn": [
              "0885-6125", 
              "1573-0565"
            ], 
            "name": "Machine Learning", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "name": "Efficient Approximations for the Marginal Likelihood of Bayesian Networks with Hidden Variables", 
        "pagination": "181-212", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d568437a79020f0c2196ce254023d5be60467d962f8e92109acec53bfa6de076"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1007469629108"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044802083"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1007469629108", 
          "https://app.dimensions.ai/details/publication/pub.1044802083"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000501.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1007469629108"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1007469629108'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1007469629108'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1007469629108'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1007469629108'


     

    This table displays all metadata directly associated to this object as RDF triples.

    137 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1007469629108 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N69f5532a61fd4497ab5a97646a832576
    4 schema:citation sg:pub.10.1007/978-1-4899-1292-3_6
    5 sg:pub.10.1007/bf00994016
    6 sg:pub.10.1007/bf00994110
    7 https://doi.org/10.1016/0031-3203(91)90074-f
    8 https://doi.org/10.1016/b978-0-934613-41-5.50005-2
    9 https://doi.org/10.1016/b978-1-55860-332-5.50009-2
    10 https://doi.org/10.1080/01621459.1991.10475130
    11 https://doi.org/10.1080/01621459.1995.10476572
    12 https://doi.org/10.1080/01621459.1995.10476592
    13 https://doi.org/10.1080/01621459.1995.10476635
    14 https://doi.org/10.1093/biomet/63.3.581
    15 https://doi.org/10.1109/72.286919
    16 https://doi.org/10.1109/tpami.1984.4767596
    17 https://doi.org/10.1162/neco.1992.4.3.415
    18 https://doi.org/10.1162/neco.1992.4.3.448
    19 https://doi.org/10.1214/aos/1176344136
    20 https://doi.org/10.1214/aos/1176350709
    21 https://doi.org/10.1214/ss/1177010888
    22 https://doi.org/10.1613/jair.251
    23 https://doi.org/10.1613/jair.62
    24 https://doi.org/10.2307/1403615
    25 https://doi.org/10.2307/271063
    26 schema:datePublished 1997-11
    27 schema:datePublishedReg 1997-11-01
    28 schema:description We discuss Bayesian methods for model averaging and model selection among Bayesian-network models with hidden variables. In particular, we examine large-sample approximations for the marginal likelihood of naive-Bayes models in which the root node is hidden. Such models are useful for clustering or unsupervised learning. We consider a Laplace approximation and the less accurate but more computationally efficient approximation known as the Bayesian Information Criterion (BIC), which is equivalent to Rissanen's (1987) Minimum Description Length (MDL). Also, we consider approximations that ignore some off-diagonal elements of the observed information matrix and an approximation proposed by Cheeseman and Stutz (1995). We evaluate the accuracy of these approximations using a Monte-Carlo gold standard. In experiments with artificial and real examples, we find that (1) none of the approximations are accurate when used for model averaging, (2) all of the approximations, with the exception of BIC/MDL, are accurate for model selection, (3) among the accurate approximations, the Cheeseman–Stutz and Diagonal approximations are the most computationally efficient, (4) all of the approximations, with the exception of BIC/MDL, can be sensitive to the prior distribution over model parameters, and (5) the Cheeseman–Stutz approximation can be more accurate than the other approximations, including the Laplace approximation, in situations where the parameters in the maximum a posteriori configuration are near a boundary.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N4069576cfe7b4a69aefd28b85f4663b3
    33 N7c08de2488de4c6c9197afd390e498ff
    34 sg:journal.1125588
    35 schema:name Efficient Approximations for the Marginal Likelihood of Bayesian Networks with Hidden Variables
    36 schema:pagination 181-212
    37 schema:productId N5cdc72f4f73b49e782b1dc531ca841fb
    38 N8de4e6dbefa9468f8d830380fccc672f
    39 Na0dfebf23b4843b3ac59833ae0b3c62b
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044802083
    41 https://doi.org/10.1023/a:1007469629108
    42 schema:sdDatePublished 2019-04-10T22:29
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher N34f37ce5fc084302a75b95c20583f780
    45 schema:url http://link.springer.com/10.1023/A:1007469629108
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N34f37ce5fc084302a75b95c20583f780 schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 N4069576cfe7b4a69aefd28b85f4663b3 schema:volumeNumber 29
    52 rdf:type schema:PublicationVolume
    53 N5cdc72f4f73b49e782b1dc531ca841fb schema:name dimensions_id
    54 schema:value pub.1044802083
    55 rdf:type schema:PropertyValue
    56 N69f5532a61fd4497ab5a97646a832576 rdf:first sg:person.011240332636.47
    57 rdf:rest Nfff70fbc231a4c83b5fbc182afcd3a27
    58 N7c08de2488de4c6c9197afd390e498ff schema:issueNumber 2-3
    59 rdf:type schema:PublicationIssue
    60 N8de4e6dbefa9468f8d830380fccc672f schema:name readcube_id
    61 schema:value d568437a79020f0c2196ce254023d5be60467d962f8e92109acec53bfa6de076
    62 rdf:type schema:PropertyValue
    63 Na0dfebf23b4843b3ac59833ae0b3c62b schema:name doi
    64 schema:value 10.1023/a:1007469629108
    65 rdf:type schema:PropertyValue
    66 Nfff70fbc231a4c83b5fbc182afcd3a27 rdf:first sg:person.01134362461.98
    67 rdf:rest rdf:nil
    68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Mathematical Sciences
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Statistics
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1125588 schema:issn 0885-6125
    75 1573-0565
    76 schema:name Machine Learning
    77 rdf:type schema:Periodical
    78 sg:person.011240332636.47 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
    79 schema:familyName Maxwell Chickering
    80 schema:givenName David
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011240332636.47
    82 rdf:type schema:Person
    83 sg:person.01134362461.98 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
    84 schema:familyName Heckerman
    85 schema:givenName David
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134362461.98
    87 rdf:type schema:Person
    88 sg:pub.10.1007/978-1-4899-1292-3_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022719367
    89 https://doi.org/10.1007/978-1-4899-1292-3_6
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bf00994016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035524560
    92 https://doi.org/10.1007/bf00994016
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/bf00994110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046316965
    95 https://doi.org/10.1007/bf00994110
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/0031-3203(91)90074-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1030619715
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/b978-0-934613-41-5.50005-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046930152
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/b978-1-55860-332-5.50009-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020634759
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1080/01621459.1991.10475130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304159
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1080/01621459.1995.10476572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304855
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1080/01621459.1995.10476592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304875
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1080/01621459.1995.10476635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304918
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1093/biomet/63.3.581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418581
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1109/72.286919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218456
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1109/tpami.1984.4767596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742090
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1162/neco.1992.4.3.415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016555682
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1162/neco.1992.4.3.448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005836706
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1214/aos/1176344136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044872629
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1214/aos/1176350709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409239
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1214/ss/1177010888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409646
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1613/jair.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105538415
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1613/jair.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105538472
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.2307/1403615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473898
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.2307/271063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070072554
    134 rdf:type schema:CreativeWork
    135 https://www.grid.ac/institutes/grid.419815.0 schema:alternateName Microsoft (United States)
    136 schema:name Microsoft Research, 98052-6399, Redmond, WA
    137 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...