Observation of Indigenous Polycyclic Aromatic Hydrocarbons in ‘Giant’ carbonaceous Antarctic Micrometeorites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-10

AUTHORS

S. J. Clemett, X. D. F. Chillier, S. Gillette, R. N. Zare, M. Maurette, C. Engrand, G. Kurat

ABSTRACT

Two-step laser desorption/laser ionization mass spectrometry (microL2 MS) was used to establish the nature and mass distribution of polycyclic aromatic hydrocarbons (PAHs) in fragments of fifteen 'giant' (approximately 200 microns) carbonaceous Antarctic micrometeorites (AMMs). Detectable concentrations of PAHs were observed in all AMMs showing a fine-grained matrix. The range of integrated PAH signal intensities varied between samples by over two orders of magnitude. No evidence of contamination whilst in the Antarctic environment could be found. The dramatic variation of both PAH signal intensities and mass distributions between AMMs along with comprehensive contamination checks demonstrates that particles are not exposed to terrestrial PAHs at or above detection limits, either subsequent, during or prior to collection. Comparison of the observed PAH distributions with those measured in three carbonaceous chondrites [Orgueil (CI1), Murchison (CM2) and Allende (CV3)] under identical conditions demonstrated that marked differences exist in the trace organic composition of these two sources of extraterrestrial matter. In general, AMMs show a far richer distribution of unalkylated 'parent' PAHs with more extended alkylation series (replacement of -H with -(CH2)n-H; n = 1, 2, 3 ...). The degree of alkylation loosely correlates with a metamorphic index that represents the extent of frictional heating incurred during atmospheric entry. A search for possible effects of the chemical composition of the fine-grain matrix of host particles on the observed PAH distributions reveals that high degrees of alkylation are associated with high Na/Si ratios. These results, in addition to other observations by Maurette, indicate that 'giant' micrometeorites survive hypervelocity (> or = 11 km s-1) atmospheric entry unexpectedly well. Because such micrometeorites are believed to represent the dominant mass fraction of extraterrestrial material accreted by the Earth, they may have played a significant role in the prebiotic chemical evolution of the early Earth through the delivery of complex organic matter to the surface of the planet. More... »

PAGES

425-448

References to SciGraph publications

  • 1991. Carbon-rich micrometeorites and prebiotic synthesis in BIOASTRONOMY THE SEARCH FOR EXTRATERRESTIAL LIFE — THE EXPLORATION BROADENS
  • 1990-02. Amino-acid synthesis in carbonaceous meteorites by aqueous alteration of polycyclic aromatic hydrocarbons in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1006572307223

    DOI

    http://dx.doi.org/10.1023/a:1006572307223

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037147493

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9742724


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geochemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antarctic Regions", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Earth (Planet)", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evolution, Chemical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Extraterrestrial Environment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Meteoroids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Electron, Scanning", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Origin of Life", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polycyclic Aromatic Hydrocarbons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemistry, Stanford University, 94305-5080, Stanford, CA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Clemett", 
            "givenName": "S. J.", 
            "id": "sg:person.0676777671.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676777671.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemistry, Stanford University, 94305-5080, Stanford, CA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chillier", 
            "givenName": "X. D. F.", 
            "id": "sg:person.010751036157.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010751036157.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemistry, Stanford University, 94305-5080, Stanford, CA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gillette", 
            "givenName": "S.", 
            "id": "sg:person.01334645647.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334645647.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemistry, Stanford University, 94305-5080, Stanford, CA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zare", 
            "givenName": "R. N.", 
            "id": "sg:person.010075246350.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010075246350.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre de Spectrom\u00e9trie Nucl\u00e9aire et de Spectrom\u00e9trie de Masse", 
              "id": "https://www.grid.ac/institutes/grid.462346.1", 
              "name": [
                "C.S.N.S.M., Batiment 104, 91405, Orsay-Campus, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maurette", 
            "givenName": "M.", 
            "id": "sg:person.012516070301.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012516070301.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Naturhistorisches Museum", 
              "id": "https://www.grid.ac/institutes/grid.425585.b", 
              "name": [
                "C.S.N.S.M., Batiment 104, 91405, Orsay-Campus, France", 
                "Mineralogische Abteilung, Postfach 417, Naturhistorisches Museum, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Engrand", 
            "givenName": "C.", 
            "id": "sg:person.014171364705.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171364705.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Naturhistorisches Museum", 
              "id": "https://www.grid.ac/institutes/grid.425585.b", 
              "name": [
                "Mineralogische Abteilung, Postfach 417, Naturhistorisches Museum, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kurat", 
            "givenName": "G.", 
            "id": "sg:person.0755701506.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755701506.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1146/annurev.ea.13.050185.001051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002843759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-54752-5_202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004944871", 
              "https://doi.org/10.1007/3-540-54752-5_202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-1035(91)90085-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005285225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-1035(91)90085-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005285225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0032-0633(96)00027-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012863298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0273-1177(99)80071-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014771596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0016-7037(95)00174-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015081483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.37.1.19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029920118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0016-7037(92)90366-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044283908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0016-7037(92)90366-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044283908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0016-7037(67)80030-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045429613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/343728a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046774854", 
              "https://doi.org/10.1038/343728a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac00030a021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054967301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.471566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058050514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.239.4847.1523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062535484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.243.4887.64", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062537204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.246.4933.1026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062538692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.262.5133.550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062547128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.262.5134.721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062547164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.273.5277.924", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062553883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812798473_0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088726205"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-10", 
        "datePublishedReg": "1998-10-01", 
        "description": "Two-step laser desorption/laser ionization mass spectrometry (microL2 MS) was used to establish the nature and mass distribution of polycyclic aromatic hydrocarbons (PAHs) in fragments of fifteen 'giant' (approximately 200 microns) carbonaceous Antarctic micrometeorites (AMMs). Detectable concentrations of PAHs were observed in all AMMs showing a fine-grained matrix. The range of integrated PAH signal intensities varied between samples by over two orders of magnitude. No evidence of contamination whilst in the Antarctic environment could be found. The dramatic variation of both PAH signal intensities and mass distributions between AMMs along with comprehensive contamination checks demonstrates that particles are not exposed to terrestrial PAHs at or above detection limits, either subsequent, during or prior to collection. Comparison of the observed PAH distributions with those measured in three carbonaceous chondrites [Orgueil (CI1), Murchison (CM2) and Allende (CV3)] under identical conditions demonstrated that marked differences exist in the trace organic composition of these two sources of extraterrestrial matter. In general, AMMs show a far richer distribution of unalkylated 'parent' PAHs with more extended alkylation series (replacement of -H with -(CH2)n-H; n = 1, 2, 3 ...). The degree of alkylation loosely correlates with a metamorphic index that represents the extent of frictional heating incurred during atmospheric entry. A search for possible effects of the chemical composition of the fine-grain matrix of host particles on the observed PAH distributions reveals that high degrees of alkylation are associated with high Na/Si ratios. These results, in addition to other observations by Maurette, indicate that 'giant' micrometeorites survive hypervelocity (> or = 11 km s-1) atmospheric entry unexpectedly well. Because such micrometeorites are believed to represent the dominant mass fraction of extraterrestrial material accreted by the Earth, they may have played a significant role in the prebiotic chemical evolution of the early Earth through the delivery of complex organic matter to the surface of the planet.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1006572307223", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1096558", 
            "issn": [
              "0169-6149", 
              "1573-0875"
            ], 
            "name": "Origins of Life and Evolution of Biospheres", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4-6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "name": "Observation of Indigenous Polycyclic Aromatic Hydrocarbons in \u2018Giant\u2019 carbonaceous Antarctic Micrometeorites", 
        "pagination": "425-448", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b0f5707c5dffc1abf98f686694a99ee6d5800ea83cbadd406634b37ddda2edbf"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9742724"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "8610391"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1006572307223"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037147493"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1006572307223", 
          "https://app.dimensions.ai/details/publication/pub.1037147493"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000500.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1006572307223"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1006572307223'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1006572307223'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1006572307223'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1006572307223'


     

    This table displays all metadata directly associated to this object as RDF triples.

    213 TRIPLES      21 PREDICATES      57 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1006572307223 schema:about N025ed2dd1f374bfd9547fc054b9f6a85
    2 N4e546a6e3a5f47d0a3351a63b2d4a51f
    3 Na2120a3b3bf94599a79cbf647f93b0b1
    4 Na7013c6ce63544b7a1ec198aea2c166e
    5 Nb01fe23568c6403694a88bcbd6c388e0
    6 Nbd1ac0309ab84b49aa9c53e765468aa7
    7 Ncd5c12ad8c3d4cff8ff100d758a4d383
    8 Nd485faa904d346d1a68a7165d7bd9dca
    9 Neee8188da76046cc94f99784c651a7a7
    10 anzsrc-for:04
    11 anzsrc-for:0402
    12 schema:author N6d7497077ead4104a3d11eda2a2e085e
    13 schema:citation sg:pub.10.1007/3-540-54752-5_202
    14 sg:pub.10.1038/343728a0
    15 https://doi.org/10.1016/0016-7037(92)90366-q
    16 https://doi.org/10.1016/0016-7037(95)00174-x
    17 https://doi.org/10.1016/0019-1035(91)90085-8
    18 https://doi.org/10.1016/s0016-7037(67)80030-9
    19 https://doi.org/10.1016/s0032-0633(96)00027-x
    20 https://doi.org/10.1016/s0273-1177(99)80071-4
    21 https://doi.org/10.1021/ac00030a021
    22 https://doi.org/10.1063/1.471566
    23 https://doi.org/10.1073/pnas.37.1.19
    24 https://doi.org/10.1126/science.239.4847.1523
    25 https://doi.org/10.1126/science.243.4887.64
    26 https://doi.org/10.1126/science.246.4933.1026
    27 https://doi.org/10.1126/science.262.5133.550
    28 https://doi.org/10.1126/science.262.5134.721
    29 https://doi.org/10.1126/science.273.5277.924
    30 https://doi.org/10.1142/9789812798473_0001
    31 https://doi.org/10.1146/annurev.ea.13.050185.001051
    32 schema:datePublished 1998-10
    33 schema:datePublishedReg 1998-10-01
    34 schema:description Two-step laser desorption/laser ionization mass spectrometry (microL2 MS) was used to establish the nature and mass distribution of polycyclic aromatic hydrocarbons (PAHs) in fragments of fifteen 'giant' (approximately 200 microns) carbonaceous Antarctic micrometeorites (AMMs). Detectable concentrations of PAHs were observed in all AMMs showing a fine-grained matrix. The range of integrated PAH signal intensities varied between samples by over two orders of magnitude. No evidence of contamination whilst in the Antarctic environment could be found. The dramatic variation of both PAH signal intensities and mass distributions between AMMs along with comprehensive contamination checks demonstrates that particles are not exposed to terrestrial PAHs at or above detection limits, either subsequent, during or prior to collection. Comparison of the observed PAH distributions with those measured in three carbonaceous chondrites [Orgueil (CI1), Murchison (CM2) and Allende (CV3)] under identical conditions demonstrated that marked differences exist in the trace organic composition of these two sources of extraterrestrial matter. In general, AMMs show a far richer distribution of unalkylated 'parent' PAHs with more extended alkylation series (replacement of -H with -(CH2)n-H; n = 1, 2, 3 ...). The degree of alkylation loosely correlates with a metamorphic index that represents the extent of frictional heating incurred during atmospheric entry. A search for possible effects of the chemical composition of the fine-grain matrix of host particles on the observed PAH distributions reveals that high degrees of alkylation are associated with high Na/Si ratios. These results, in addition to other observations by Maurette, indicate that 'giant' micrometeorites survive hypervelocity (> or = 11 km s-1) atmospheric entry unexpectedly well. Because such micrometeorites are believed to represent the dominant mass fraction of extraterrestrial material accreted by the Earth, they may have played a significant role in the prebiotic chemical evolution of the early Earth through the delivery of complex organic matter to the surface of the planet.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf Nf4eeefceb84e4890b9c93c476fa6d786
    39 Nf7db8714e75349e7b8d74370af198cbc
    40 sg:journal.1096558
    41 schema:name Observation of Indigenous Polycyclic Aromatic Hydrocarbons in ‘Giant’ carbonaceous Antarctic Micrometeorites
    42 schema:pagination 425-448
    43 schema:productId N16a81bba9bbc40fbb928dec4e96b15ef
    44 N6e87ed1e9b284f2bb12e2f9c8b2a79eb
    45 Nbadca256a58b4b3e959d7e108bc05dbe
    46 Ne69c7d64c78745d0a18898fcd7a7736e
    47 Nf3d93c6bc3664742b73f8b420e483c95
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037147493
    49 https://doi.org/10.1023/a:1006572307223
    50 schema:sdDatePublished 2019-04-10T14:58
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher Ne6d603cf750645f8888ffcc4897a8338
    53 schema:url http://link.springer.com/10.1023/A:1006572307223
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N025ed2dd1f374bfd9547fc054b9f6a85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    58 schema:name Meteoroids
    59 rdf:type schema:DefinedTerm
    60 N082887989db5482697bc78e4b06fd370 rdf:first sg:person.01334645647.45
    61 rdf:rest N581a28698a3148049873ce58544c535b
    62 N16a81bba9bbc40fbb928dec4e96b15ef schema:name dimensions_id
    63 schema:value pub.1037147493
    64 rdf:type schema:PropertyValue
    65 N2792b8fd98584cf286dc96e1e42bbc07 rdf:first sg:person.010751036157.23
    66 rdf:rest N082887989db5482697bc78e4b06fd370
    67 N4b3e83d789ad4d62a29d0d017af929c4 rdf:first sg:person.0755701506.13
    68 rdf:rest rdf:nil
    69 N4e546a6e3a5f47d0a3351a63b2d4a51f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Microscopy, Electron, Scanning
    71 rdf:type schema:DefinedTerm
    72 N581a28698a3148049873ce58544c535b rdf:first sg:person.010075246350.09
    73 rdf:rest Nd2a11da76d6f4ceca1f85587ddc20880
    74 N6d7497077ead4104a3d11eda2a2e085e rdf:first sg:person.0676777671.57
    75 rdf:rest N2792b8fd98584cf286dc96e1e42bbc07
    76 N6e87ed1e9b284f2bb12e2f9c8b2a79eb schema:name nlm_unique_id
    77 schema:value 8610391
    78 rdf:type schema:PropertyValue
    79 N8f78f88b4e164b15acfd21e3b23f266c rdf:first sg:person.014171364705.61
    80 rdf:rest N4b3e83d789ad4d62a29d0d017af929c4
    81 Na2120a3b3bf94599a79cbf647f93b0b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Antarctic Regions
    83 rdf:type schema:DefinedTerm
    84 Na7013c6ce63544b7a1ec198aea2c166e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
    86 rdf:type schema:DefinedTerm
    87 Nb01fe23568c6403694a88bcbd6c388e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Earth (Planet)
    89 rdf:type schema:DefinedTerm
    90 Nbadca256a58b4b3e959d7e108bc05dbe schema:name doi
    91 schema:value 10.1023/a:1006572307223
    92 rdf:type schema:PropertyValue
    93 Nbd1ac0309ab84b49aa9c53e765468aa7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Polycyclic Aromatic Hydrocarbons
    95 rdf:type schema:DefinedTerm
    96 Ncd5c12ad8c3d4cff8ff100d758a4d383 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Origin of Life
    98 rdf:type schema:DefinedTerm
    99 Nd2a11da76d6f4ceca1f85587ddc20880 rdf:first sg:person.012516070301.99
    100 rdf:rest N8f78f88b4e164b15acfd21e3b23f266c
    101 Nd485faa904d346d1a68a7165d7bd9dca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Evolution, Chemical
    103 rdf:type schema:DefinedTerm
    104 Ne69c7d64c78745d0a18898fcd7a7736e schema:name pubmed_id
    105 schema:value 9742724
    106 rdf:type schema:PropertyValue
    107 Ne6d603cf750645f8888ffcc4897a8338 schema:name Springer Nature - SN SciGraph project
    108 rdf:type schema:Organization
    109 Neee8188da76046cc94f99784c651a7a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Extraterrestrial Environment
    111 rdf:type schema:DefinedTerm
    112 Nf3d93c6bc3664742b73f8b420e483c95 schema:name readcube_id
    113 schema:value b0f5707c5dffc1abf98f686694a99ee6d5800ea83cbadd406634b37ddda2edbf
    114 rdf:type schema:PropertyValue
    115 Nf4eeefceb84e4890b9c93c476fa6d786 schema:volumeNumber 28
    116 rdf:type schema:PublicationVolume
    117 Nf7db8714e75349e7b8d74370af198cbc schema:issueNumber 4-6
    118 rdf:type schema:PublicationIssue
    119 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Earth Sciences
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:0402 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Geochemistry
    124 rdf:type schema:DefinedTerm
    125 sg:journal.1096558 schema:issn 0169-6149
    126 1573-0875
    127 schema:name Origins of Life and Evolution of Biospheres
    128 rdf:type schema:Periodical
    129 sg:person.010075246350.09 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    130 schema:familyName Zare
    131 schema:givenName R. N.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010075246350.09
    133 rdf:type schema:Person
    134 sg:person.010751036157.23 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    135 schema:familyName Chillier
    136 schema:givenName X. D. F.
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010751036157.23
    138 rdf:type schema:Person
    139 sg:person.012516070301.99 schema:affiliation https://www.grid.ac/institutes/grid.462346.1
    140 schema:familyName Maurette
    141 schema:givenName M.
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012516070301.99
    143 rdf:type schema:Person
    144 sg:person.01334645647.45 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    145 schema:familyName Gillette
    146 schema:givenName S.
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334645647.45
    148 rdf:type schema:Person
    149 sg:person.014171364705.61 schema:affiliation https://www.grid.ac/institutes/grid.425585.b
    150 schema:familyName Engrand
    151 schema:givenName C.
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171364705.61
    153 rdf:type schema:Person
    154 sg:person.0676777671.57 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    155 schema:familyName Clemett
    156 schema:givenName S. J.
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676777671.57
    158 rdf:type schema:Person
    159 sg:person.0755701506.13 schema:affiliation https://www.grid.ac/institutes/grid.425585.b
    160 schema:familyName Kurat
    161 schema:givenName G.
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755701506.13
    163 rdf:type schema:Person
    164 sg:pub.10.1007/3-540-54752-5_202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004944871
    165 https://doi.org/10.1007/3-540-54752-5_202
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/343728a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046774854
    168 https://doi.org/10.1038/343728a0
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/0016-7037(92)90366-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1044283908
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/0016-7037(95)00174-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015081483
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/0019-1035(91)90085-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005285225
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/s0016-7037(67)80030-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045429613
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/s0032-0633(96)00027-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012863298
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/s0273-1177(99)80071-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014771596
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1021/ac00030a021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054967301
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1063/1.471566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058050514
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1073/pnas.37.1.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029920118
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1126/science.239.4847.1523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062535484
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1126/science.243.4887.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062537204
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1126/science.246.4933.1026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062538692
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1126/science.262.5133.550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062547128
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1126/science.262.5134.721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062547164
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1126/science.273.5277.924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553883
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1142/9789812798473_0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088726205
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1146/annurev.ea.13.050185.001051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002843759
    203 rdf:type schema:CreativeWork
    204 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
    205 schema:name Department of Chemistry, Stanford University, 94305-5080, Stanford, CA, U.S.A.
    206 rdf:type schema:Organization
    207 https://www.grid.ac/institutes/grid.425585.b schema:alternateName Naturhistorisches Museum
    208 schema:name C.S.N.S.M., Batiment 104, 91405, Orsay-Campus, France
    209 Mineralogische Abteilung, Postfach 417, Naturhistorisches Museum, Vienna, Austria
    210 rdf:type schema:Organization
    211 https://www.grid.ac/institutes/grid.462346.1 schema:alternateName Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse
    212 schema:name C.S.N.S.M., Batiment 104, 91405, Orsay-Campus, France
    213 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...