Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-06

AUTHORS

M.A. Matzke, M.F. Mette, A.J.M. Matzke

ABSTRACT

Increasing evidence supports the idea that various transgene silencing phenomena reflect the activity of diverse host defense responses that act ordinarily on natural foreign or parasitic sequences such as transposable elements, viroids, RNA and DNA viruses, and bacterial DNA. Transgenes or their transcripts can resemble these cellular invaders in a number of ways, thus making them targets of host protective reactions. At least two distinct host defense systems operate to silence transgenes. One acts at the genome level and is associated with de novo DNA methylation. A second line of defense operates post-transcriptionally and involves sequence-specific RNA degradation in the cytoplasm. Transgenes that are silenced as a consequence of the genome defense are revealing that de novo methylation can be cued by DNA-DNA or RNA-DNA interactions. These methylation signals can be interpreted in the context of transposable elements or their transcripts. During evolution, as transposable elements accumulated in plant and vertebrate genomes and as they invaded flanking regions of genes, the genome defense was possibly recruited to establish global epigenetic mechanisms to regulate gene expression. Transposons integrated into promoters of host genes could conceivably change expression patterns and attract methylation, thus imposing on endogenous genes the type of epigenetic regulation associated with the genome defense. This recruitment process might have been particularly effective in the polyploid genomes of plants and early vertebrates. Duplication of the entire genome in polyploids buffers against insertional mutagenesis by transposable elements and permits their infiltration into individual copies of duplicated genes. More... »

PAGES

401-415

References to SciGraph publications

  • 1992-12. Characterization of a new repetitive sequence that is enriched on microchromosomes of turkey in CHROMOSOMA
  • 1998-06. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription in NATURE GENETICS
  • 1994-03. Gene inactivation triggered by recognition between DNA repeats in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 1999-09. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites in NATURE
  • 1999-12. The future of evolutionary developmental biology in NATURE
  • 1999-09. Multiple DNA methyltransferase genes in Arabidopsis thaliana in PLANT MOLECULAR BIOLOGY
  • 1997-08. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation in PLANT MOLECULAR BIOLOGY
  • 1999-05. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase in NATURE
  • 1999-12. Vestiges of a DNA methylation system in Drosophila melanogaster? in NATURE GENETICS
  • 1999-09. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation in NATURE GENETICS
  • 1995-11. Athila, a new retroelement from Arabidopsis thaliana in PLANT MOLECULAR BIOLOGY
  • 1999-10. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 in NATURE GENETICS
  • 1998-09. The paleontology of intergene retrotransposons of maize in NATURE GENETICS
  • 1999-05. Maintenance of genomic methylation requires a SWI2/SNF2-like protein in NATURE GENETICS
  • 2000-01. Genome evolution in polyploids in PLANT MOLECULAR BIOLOGY
  • 1998-05. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex in NATURE
  • 1993-05. Copia-like retrotransposable element evolution in diploid and polyploid cotton (Gossypium L.) in JOURNAL OF MOLECULAR EVOLUTION
  • 1999-11. Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila in NATURE GENETICS
  • 1996-04. Creation of genomic methylation patterns in NATURE GENETICS
  • 2000. Host defenses to parasitic sequences and the evolution of epigenetic control mechanisms in TRANSPOSABLE ELEMENTS AND GENOME EVOLUTION
  • 1999-11. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene in NATURE
  • 2000-01. Transposable element contributions to plant gene and genome evolution in PLANT MOLECULAR BIOLOGY
  • 1998-12. Identification of a New Family of Highly Repetitive DNA, NTS9, that is Located Predominantly on the S9 Chromosome of Tobacco in CHROMOSOME RESEARCH
  • 1989-10. Transformation by integration in Podospora anserina in MOLECULAR GENETICS AND GENOMICS
  • 1999-09. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex in NATURE GENETICS
  • 2000-01. DNA methyltransferase Dnmt1 associates with histone deacetylase activity in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1006484806925

    DOI

    http://dx.doi.org/10.1023/a:1006484806925

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033006586

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10999419


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evolution, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Silencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plants", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plants, Genetically Modified", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transgenes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vertebrates", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, 5020, Salzburg, Austria", 
              "id": "http://www.grid.ac/institutes/grid.4299.6", 
              "name": [
                "Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, 5020, Salzburg, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Matzke", 
            "givenName": "M.A.", 
            "id": "sg:person.01366677656.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366677656.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, 5020, Salzburg, Austria", 
              "id": "http://www.grid.ac/institutes/grid.4299.6", 
              "name": [
                "Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, 5020, Salzburg, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mette", 
            "givenName": "M.F.", 
            "id": "sg:person.01147161251.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147161251.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, 5020, Salzburg, Austria", 
              "id": "http://www.grid.ac/institutes/grid.4299.6", 
              "name": [
                "Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, 5020, Salzburg, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Matzke", 
            "givenName": "A.J.M.", 
            "id": "sg:person.0604170460.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604170460.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00352284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048741613", 
              "https://doi.org/10.1007/bf00352284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35011536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013929499", 
              "https://doi.org/10.1038/35011536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00020976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049199652", 
              "https://doi.org/10.1007/bf00020976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/15551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041454322", 
              "https://doi.org/10.1038/15551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/12659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024638800", 
              "https://doi.org/10.1038/12659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/71750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027287559", 
              "https://doi.org/10.1038/71750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/20215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038481561", 
              "https://doi.org/10.1038/20215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/30764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005546919", 
              "https://doi.org/10.1038/30764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01924014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053314630", 
              "https://doi.org/10.1007/bf01924014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/8803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012189642", 
              "https://doi.org/10.1038/8803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/12664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039527067", 
              "https://doi.org/10.1038/12664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-4156-7_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001508259", 
              "https://doi.org/10.1007/978-94-011-4156-7_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/46052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052544917", 
              "https://doi.org/10.1038/46052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/45843", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018649955", 
              "https://doi.org/10.1038/45843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006392424384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042886293", 
              "https://doi.org/10.1023/a:1006392424384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/13810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002301472", 
              "https://doi.org/10.1038/13810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009265713279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037344993", 
              "https://doi.org/10.1023/a:1009265713279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005849303333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035268413", 
              "https://doi.org/10.1023/a:1005849303333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006344508454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020305010", 
              "https://doi.org/10.1023/a:1006344508454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006347010369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045443073", 
              "https://doi.org/10.1023/a:1006347010369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/1695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017391035", 
              "https://doi.org/10.1038/1695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/70490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040260081", 
              "https://doi.org/10.1038/70490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027172656", 
              "https://doi.org/10.1038/561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02406720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041780401", 
              "https://doi.org/10.1007/bf02406720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0496-363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032800066", 
              "https://doi.org/10.1038/ng0496-363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00261187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013759252", 
              "https://doi.org/10.1007/bf00261187"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-06", 
        "datePublishedReg": "2000-06-01", 
        "description": "Increasing evidence supports the idea that various transgene silencing phenomena reflect the activity of diverse host defense responses that act ordinarily on natural foreign or parasitic sequences such as transposable elements, viroids, RNA and DNA viruses, and bacterial DNA. Transgenes or their transcripts can resemble these cellular invaders in a number of ways, thus making them targets of host protective reactions. At least two distinct host defense systems operate to silence transgenes. One acts at the genome level and is associated with de novo DNA methylation. A second line of defense operates post-transcriptionally and involves sequence-specific RNA degradation in the cytoplasm. Transgenes that are silenced as a consequence of the genome defense are revealing that de novo methylation can be cued by DNA-DNA or RNA-DNA interactions. These methylation signals can be interpreted in the context of transposable elements or their transcripts. During evolution, as transposable elements accumulated in plant and vertebrate genomes and as they invaded flanking regions of genes, the genome defense was possibly recruited to establish global epigenetic mechanisms to regulate gene expression. Transposons integrated into promoters of host genes could conceivably change expression patterns and attract methylation, thus imposing on endogenous genes the type of epigenetic regulation associated with the genome defense. This recruitment process might have been particularly effective in the polyploid genomes of plants and early vertebrates. Duplication of the entire genome in polyploids buffers against insertional mutagenesis by transposable elements and permits their infiltration into individual copies of duplicated genes.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1006484806925", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1101246", 
            "issn": [
              "0167-4412", 
              "1573-5028"
            ], 
            "name": "Plant Molecular Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "43"
          }
        ], 
        "keywords": [
          "genome defense", 
          "transposable elements", 
          "sequence-specific RNA degradation", 
          "de novo DNA methylation", 
          "host genome defense", 
          "novo DNA methylation", 
          "RNA-DNA interactions", 
          "epigenetic control mechanisms", 
          "de novo methylation", 
          "global epigenetic mechanisms", 
          "host defense responses", 
          "polyploid genomes", 
          "early vertebrates", 
          "parasitic sequences", 
          "novo methylation", 
          "defense responses", 
          "genome level", 
          "endogenous genes", 
          "epigenetic regulation", 
          "epigenetic mechanisms", 
          "entire genome", 
          "DNA methylation", 
          "host genes", 
          "methylation signals", 
          "RNA degradation", 
          "insertional mutagenesis", 
          "flanking regions", 
          "host defense system", 
          "gene expression", 
          "expression patterns", 
          "DNA viruses", 
          "genome", 
          "genes", 
          "DNA-DNA", 
          "methylation", 
          "vertebrates", 
          "transgene", 
          "plants", 
          "defense system", 
          "individual copies", 
          "bacterial DNA", 
          "transcripts", 
          "defense", 
          "protective reactions", 
          "transposon", 
          "mutagenesis", 
          "invaders", 
          "control mechanisms", 
          "promoter", 
          "viroid", 
          "RNA", 
          "duplication", 
          "cytoplasm", 
          "DNA", 
          "evolution", 
          "regulation", 
          "recruitment process", 
          "mechanism", 
          "copies", 
          "sequence", 
          "expression", 
          "target", 
          "virus", 
          "degradation", 
          "elements", 
          "lines", 
          "interaction", 
          "activity", 
          "region", 
          "patterns", 
          "response", 
          "number of ways", 
          "signals", 
          "consequences", 
          "evidence", 
          "levels", 
          "number", 
          "types", 
          "second line", 
          "process", 
          "buffer", 
          "implications", 
          "system", 
          "reaction", 
          "context", 
          "phenomenon", 
          "way", 
          "infiltration", 
          "idea", 
          "post"
        ], 
        "name": "Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates", 
        "pagination": "401-415", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033006586"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1006484806925"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10999419"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1006484806925", 
          "https://app.dimensions.ai/details/publication/pub.1033006586"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_331.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1006484806925"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1006484806925'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1006484806925'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1006484806925'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1006484806925'


     

    This table displays all metadata directly associated to this object as RDF triples.

    313 TRIPLES      21 PREDICATES      153 URIs      119 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1006484806925 schema:about N1a5e360c314a42fb9e3694ac1f353544
    2 N3894b1e6f22145af81012c3848e4ca24
    3 N515d57b8d0934f8aa6a59a14bcab3d52
    4 N525fe40fad7c493097796dfb6b775bb0
    5 N6062977fcfe042ed96d8e93169cdde62
    6 N63d4cde1c668492c99d27756a9452f59
    7 N71363efc521e42ec8bf11eb91047939b
    8 N83003887b84145cc9c0d4594f80d1460
    9 Nad94814047e14942bdbdd02a84106717
    10 Nb541cd243869497b979ed3361bac06ee
    11 Ncf3c0f08abee4743a9c843a3fdc11329
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author N4118ba57692e4bdababe59a13b8caa56
    15 schema:citation sg:pub.10.1007/978-94-011-4156-7_27
    16 sg:pub.10.1007/bf00020976
    17 sg:pub.10.1007/bf00261187
    18 sg:pub.10.1007/bf00352284
    19 sg:pub.10.1007/bf01924014
    20 sg:pub.10.1007/bf02406720
    21 sg:pub.10.1023/a:1005849303333
    22 sg:pub.10.1023/a:1006344508454
    23 sg:pub.10.1023/a:1006347010369
    24 sg:pub.10.1023/a:1006392424384
    25 sg:pub.10.1023/a:1009265713279
    26 sg:pub.10.1038/12659
    27 sg:pub.10.1038/12664
    28 sg:pub.10.1038/13810
    29 sg:pub.10.1038/15551
    30 sg:pub.10.1038/1695
    31 sg:pub.10.1038/20215
    32 sg:pub.10.1038/30764
    33 sg:pub.10.1038/35011536
    34 sg:pub.10.1038/45843
    35 sg:pub.10.1038/46052
    36 sg:pub.10.1038/561
    37 sg:pub.10.1038/70490
    38 sg:pub.10.1038/71750
    39 sg:pub.10.1038/8803
    40 sg:pub.10.1038/ng0496-363
    41 schema:datePublished 2000-06
    42 schema:datePublishedReg 2000-06-01
    43 schema:description Increasing evidence supports the idea that various transgene silencing phenomena reflect the activity of diverse host defense responses that act ordinarily on natural foreign or parasitic sequences such as transposable elements, viroids, RNA and DNA viruses, and bacterial DNA. Transgenes or their transcripts can resemble these cellular invaders in a number of ways, thus making them targets of host protective reactions. At least two distinct host defense systems operate to silence transgenes. One acts at the genome level and is associated with de novo DNA methylation. A second line of defense operates post-transcriptionally and involves sequence-specific RNA degradation in the cytoplasm. Transgenes that are silenced as a consequence of the genome defense are revealing that de novo methylation can be cued by DNA-DNA or RNA-DNA interactions. These methylation signals can be interpreted in the context of transposable elements or their transcripts. During evolution, as transposable elements accumulated in plant and vertebrate genomes and as they invaded flanking regions of genes, the genome defense was possibly recruited to establish global epigenetic mechanisms to regulate gene expression. Transposons integrated into promoters of host genes could conceivably change expression patterns and attract methylation, thus imposing on endogenous genes the type of epigenetic regulation associated with the genome defense. This recruitment process might have been particularly effective in the polyploid genomes of plants and early vertebrates. Duplication of the entire genome in polyploids buffers against insertional mutagenesis by transposable elements and permits their infiltration into individual copies of duplicated genes.
    44 schema:genre article
    45 schema:isAccessibleForFree false
    46 schema:isPartOf N45b1b7a4433d4d68a1066331b7781833
    47 N6470fe55aeec4dee89ee4335cbf4a341
    48 sg:journal.1101246
    49 schema:keywords DNA
    50 DNA methylation
    51 DNA viruses
    52 DNA-DNA
    53 RNA
    54 RNA degradation
    55 RNA-DNA interactions
    56 activity
    57 bacterial DNA
    58 buffer
    59 consequences
    60 context
    61 control mechanisms
    62 copies
    63 cytoplasm
    64 de novo DNA methylation
    65 de novo methylation
    66 defense
    67 defense responses
    68 defense system
    69 degradation
    70 duplication
    71 early vertebrates
    72 elements
    73 endogenous genes
    74 entire genome
    75 epigenetic control mechanisms
    76 epigenetic mechanisms
    77 epigenetic regulation
    78 evidence
    79 evolution
    80 expression
    81 expression patterns
    82 flanking regions
    83 gene expression
    84 genes
    85 genome
    86 genome defense
    87 genome level
    88 global epigenetic mechanisms
    89 host defense responses
    90 host defense system
    91 host genes
    92 host genome defense
    93 idea
    94 implications
    95 individual copies
    96 infiltration
    97 insertional mutagenesis
    98 interaction
    99 invaders
    100 levels
    101 lines
    102 mechanism
    103 methylation
    104 methylation signals
    105 mutagenesis
    106 novo DNA methylation
    107 novo methylation
    108 number
    109 number of ways
    110 parasitic sequences
    111 patterns
    112 phenomenon
    113 plants
    114 polyploid genomes
    115 post
    116 process
    117 promoter
    118 protective reactions
    119 reaction
    120 recruitment process
    121 region
    122 regulation
    123 response
    124 second line
    125 sequence
    126 sequence-specific RNA degradation
    127 signals
    128 system
    129 target
    130 transcripts
    131 transgene
    132 transposable elements
    133 transposon
    134 types
    135 vertebrates
    136 viroid
    137 virus
    138 way
    139 schema:name Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates
    140 schema:pagination 401-415
    141 schema:productId N0ed29223ea6d4f6094439a34b5379a83
    142 N7dd48e9970c14fa3b8d52b48c76108ec
    143 N8bf970d3aea84f52afbaf723897b3bd9
    144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033006586
    145 https://doi.org/10.1023/a:1006484806925
    146 schema:sdDatePublished 2022-12-01T06:22
    147 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    148 schema:sdPublisher Ne03e2a18be3a4bff99218e5a046a1085
    149 schema:url https://doi.org/10.1023/a:1006484806925
    150 sgo:license sg:explorer/license/
    151 sgo:sdDataset articles
    152 rdf:type schema:ScholarlyArticle
    153 N0ed29223ea6d4f6094439a34b5379a83 schema:name dimensions_id
    154 schema:value pub.1033006586
    155 rdf:type schema:PropertyValue
    156 N1a5e360c314a42fb9e3694ac1f353544 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Plants, Genetically Modified
    158 rdf:type schema:DefinedTerm
    159 N3894b1e6f22145af81012c3848e4ca24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Humans
    161 rdf:type schema:DefinedTerm
    162 N4118ba57692e4bdababe59a13b8caa56 rdf:first sg:person.01366677656.47
    163 rdf:rest N8405fa9617ce45528f9b426e08df4546
    164 N45b1b7a4433d4d68a1066331b7781833 schema:volumeNumber 43
    165 rdf:type schema:PublicationVolume
    166 N4d38f176b77146f494126b776580da3b rdf:first sg:person.0604170460.05
    167 rdf:rest rdf:nil
    168 N515d57b8d0934f8aa6a59a14bcab3d52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Evolution, Molecular
    170 rdf:type schema:DefinedTerm
    171 N525fe40fad7c493097796dfb6b775bb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Gene Expression Regulation
    173 rdf:type schema:DefinedTerm
    174 N6062977fcfe042ed96d8e93169cdde62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Gene Silencing
    176 rdf:type schema:DefinedTerm
    177 N63d4cde1c668492c99d27756a9452f59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Plants
    179 rdf:type schema:DefinedTerm
    180 N6470fe55aeec4dee89ee4335cbf4a341 schema:issueNumber 2-3
    181 rdf:type schema:PublicationIssue
    182 N71363efc521e42ec8bf11eb91047939b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Gene Expression Regulation, Plant
    184 rdf:type schema:DefinedTerm
    185 N7dd48e9970c14fa3b8d52b48c76108ec schema:name doi
    186 schema:value 10.1023/a:1006484806925
    187 rdf:type schema:PropertyValue
    188 N83003887b84145cc9c0d4594f80d1460 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Vertebrates
    190 rdf:type schema:DefinedTerm
    191 N8405fa9617ce45528f9b426e08df4546 rdf:first sg:person.01147161251.39
    192 rdf:rest N4d38f176b77146f494126b776580da3b
    193 N8bf970d3aea84f52afbaf723897b3bd9 schema:name pubmed_id
    194 schema:value 10999419
    195 rdf:type schema:PropertyValue
    196 Nad94814047e14942bdbdd02a84106717 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Animals
    198 rdf:type schema:DefinedTerm
    199 Nb541cd243869497b979ed3361bac06ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Genome, Plant
    201 rdf:type schema:DefinedTerm
    202 Ncf3c0f08abee4743a9c843a3fdc11329 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Transgenes
    204 rdf:type schema:DefinedTerm
    205 Ne03e2a18be3a4bff99218e5a046a1085 schema:name Springer Nature - SN SciGraph project
    206 rdf:type schema:Organization
    207 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    208 schema:name Biological Sciences
    209 rdf:type schema:DefinedTerm
    210 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    211 schema:name Genetics
    212 rdf:type schema:DefinedTerm
    213 sg:journal.1101246 schema:issn 0167-4412
    214 1573-5028
    215 schema:name Plant Molecular Biology
    216 schema:publisher Springer Nature
    217 rdf:type schema:Periodical
    218 sg:person.01147161251.39 schema:affiliation grid-institutes:grid.4299.6
    219 schema:familyName Mette
    220 schema:givenName M.F.
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147161251.39
    222 rdf:type schema:Person
    223 sg:person.01366677656.47 schema:affiliation grid-institutes:grid.4299.6
    224 schema:familyName Matzke
    225 schema:givenName M.A.
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366677656.47
    227 rdf:type schema:Person
    228 sg:person.0604170460.05 schema:affiliation grid-institutes:grid.4299.6
    229 schema:familyName Matzke
    230 schema:givenName A.J.M.
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604170460.05
    232 rdf:type schema:Person
    233 sg:pub.10.1007/978-94-011-4156-7_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001508259
    234 https://doi.org/10.1007/978-94-011-4156-7_27
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/bf00020976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049199652
    237 https://doi.org/10.1007/bf00020976
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/bf00261187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013759252
    240 https://doi.org/10.1007/bf00261187
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/bf00352284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048741613
    243 https://doi.org/10.1007/bf00352284
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/bf01924014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053314630
    246 https://doi.org/10.1007/bf01924014
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/bf02406720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041780401
    249 https://doi.org/10.1007/bf02406720
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1023/a:1005849303333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035268413
    252 https://doi.org/10.1023/a:1005849303333
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1023/a:1006344508454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020305010
    255 https://doi.org/10.1023/a:1006344508454
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1023/a:1006347010369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045443073
    258 https://doi.org/10.1023/a:1006347010369
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1023/a:1006392424384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042886293
    261 https://doi.org/10.1023/a:1006392424384
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1023/a:1009265713279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037344993
    264 https://doi.org/10.1023/a:1009265713279
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/12659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024638800
    267 https://doi.org/10.1038/12659
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/12664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039527067
    270 https://doi.org/10.1038/12664
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/13810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002301472
    273 https://doi.org/10.1038/13810
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/15551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041454322
    276 https://doi.org/10.1038/15551
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/1695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017391035
    279 https://doi.org/10.1038/1695
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/20215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038481561
    282 https://doi.org/10.1038/20215
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/30764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005546919
    285 https://doi.org/10.1038/30764
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/35011536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013929499
    288 https://doi.org/10.1038/35011536
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/45843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018649955
    291 https://doi.org/10.1038/45843
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/46052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052544917
    294 https://doi.org/10.1038/46052
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027172656
    297 https://doi.org/10.1038/561
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/70490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040260081
    300 https://doi.org/10.1038/70490
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/71750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027287559
    303 https://doi.org/10.1038/71750
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/8803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012189642
    306 https://doi.org/10.1038/8803
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/ng0496-363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032800066
    309 https://doi.org/10.1038/ng0496-363
    310 rdf:type schema:CreativeWork
    311 grid-institutes:grid.4299.6 schema:alternateName Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, 5020, Salzburg, Austria
    312 schema:name Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, 5020, Salzburg, Austria
    313 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...