The Sensitivity of Mesoscale Chemistry Transport Model Results to Boundary Values View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-11

AUTHORS

C.-J. Lenz, F. Müller, K. H. Schlünzen

ABSTRACT

Using a high resolution meteorology-chemistry transport model, simulations were performed to estimate the sensitivity of the model results to nesting. The model results are compared with airplane measurements made during the TRACT field measuring campaign in September, 1992. For the meteorological part of the model the performance is enhanced using one-way nesting in a larger scale model, if the quality of the large scale driving data is sufficient. The sensitivity of the NOx concentration results with respect to nesting of chemical quantities is rather low due to the poor quality of the forcing data. A correct description of the emission rates and the meteorological conditions may be more important. For ozone, the best results can be achieved with either no nesting or a meteorological and chemical nested model simulation, which is again a result of the poor quality of the forcing data. More... »

PAGES

287-295

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1006467431546

DOI

http://dx.doi.org/10.1023/a:1006467431546

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036015371


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": ">Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            ">Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lenz", 
        "givenName": "C.-J.", 
        "id": "sg:person.016576730165.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016576730165.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "F.", 
        "id": "sg:person.013535206074.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013535206074.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schl\u00fcnzen", 
        "givenName": "K. H.", 
        "id": "sg:person.012560545423.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-11", 
    "datePublishedReg": "2000-11-01", 
    "description": "Using a high resolution meteorology-chemistry transport model, simulations were performed to estimate the sensitivity of the model results to nesting. The model results are compared with airplane measurements made during the TRACT field measuring campaign in September, 1992. For the meteorological part of the model the performance is enhanced using one-way nesting in a larger scale model, if the quality of the large scale driving data is sufficient. The sensitivity of the NOx concentration results with respect to nesting of chemical quantities is rather low due to the poor quality of the forcing data. A correct description of the emission rates and the meteorological conditions may be more important. For ozone, the best results can be achieved with either no nesting or a meteorological and chemical nested model simulation, which is again a result of the poor quality of the forcing data.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1006467431546", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095684", 
        "issn": [
          "0167-6369", 
          "1573-2959"
        ], 
        "name": "Environmental Monitoring and Assessment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "65"
      }
    ], 
    "keywords": [
      "chemistry transport model", 
      "mesoscale chemistry transport model", 
      "chemical quantities", 
      "meteorological part", 
      "NOx concentrations", 
      "transport model", 
      "correct description", 
      "ozone", 
      "emission rates", 
      "sensitivity", 
      "concentration", 
      "measurements", 
      "good results", 
      "airplane measurements", 
      "simulations", 
      "results", 
      "quantity", 
      "conditions", 
      "performance", 
      "meteorological conditions", 
      "model simulations", 
      "values", 
      "field", 
      "respect", 
      "model results", 
      "rate", 
      "data", 
      "model", 
      "description", 
      "quality", 
      "part", 
      "campaign", 
      "large scale models", 
      "nesting", 
      "poor quality", 
      "boundary values", 
      "scale model", 
      "one-way", 
      "driving data", 
      "high resolution meteorology-chemistry transport model", 
      "resolution meteorology-chemistry transport model", 
      "meteorology-chemistry transport model", 
      "TRACT field", 
      "large scale driving data", 
      "scale driving data"
    ], 
    "name": "The Sensitivity of Mesoscale Chemistry Transport Model Results to Boundary Values", 
    "pagination": "287-295", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036015371"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1006467431546"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1006467431546", 
      "https://app.dimensions.ai/details/publication/pub.1036015371"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_312.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1006467431546"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1006467431546'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1006467431546'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1006467431546'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1006467431546'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      21 PREDICATES      71 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1006467431546 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author N99fbe8ce5d564d85b4c37609385b775b
4 schema:datePublished 2000-11
5 schema:datePublishedReg 2000-11-01
6 schema:description Using a high resolution meteorology-chemistry transport model, simulations were performed to estimate the sensitivity of the model results to nesting. The model results are compared with airplane measurements made during the TRACT field measuring campaign in September, 1992. For the meteorological part of the model the performance is enhanced using one-way nesting in a larger scale model, if the quality of the large scale driving data is sufficient. The sensitivity of the NOx concentration results with respect to nesting of chemical quantities is rather low due to the poor quality of the forcing data. A correct description of the emission rates and the meteorological conditions may be more important. For ozone, the best results can be achieved with either no nesting or a meteorological and chemical nested model simulation, which is again a result of the poor quality of the forcing data.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne2470e700439419a8f6992a2a2a14a91
11 Nf9aee59de4244950bb42f879aee3f880
12 sg:journal.1095684
13 schema:keywords NOx concentrations
14 TRACT field
15 airplane measurements
16 boundary values
17 campaign
18 chemical quantities
19 chemistry transport model
20 concentration
21 conditions
22 correct description
23 data
24 description
25 driving data
26 emission rates
27 field
28 good results
29 high resolution meteorology-chemistry transport model
30 large scale driving data
31 large scale models
32 measurements
33 mesoscale chemistry transport model
34 meteorological conditions
35 meteorological part
36 meteorology-chemistry transport model
37 model
38 model results
39 model simulations
40 nesting
41 one-way
42 ozone
43 part
44 performance
45 poor quality
46 quality
47 quantity
48 rate
49 resolution meteorology-chemistry transport model
50 respect
51 results
52 scale driving data
53 scale model
54 sensitivity
55 simulations
56 transport model
57 values
58 schema:name The Sensitivity of Mesoscale Chemistry Transport Model Results to Boundary Values
59 schema:pagination 287-295
60 schema:productId N181c1c8c11374fbe8726f466948f58e3
61 N9fede2a8d98a45a686a4c0c57cce3711
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036015371
63 https://doi.org/10.1023/a:1006467431546
64 schema:sdDatePublished 2022-01-01T18:09
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N63c4ec883abd4b79b5b70ec726883eeb
67 schema:url https://doi.org/10.1023/a:1006467431546
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N181c1c8c11374fbe8726f466948f58e3 schema:name dimensions_id
72 schema:value pub.1036015371
73 rdf:type schema:PropertyValue
74 N367472b711464afe874feb2e5bb9afe3 rdf:first sg:person.013535206074.60
75 rdf:rest N7e274bbdaa2b4b289e60897a74929531
76 N63c4ec883abd4b79b5b70ec726883eeb schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N7e274bbdaa2b4b289e60897a74929531 rdf:first sg:person.012560545423.41
79 rdf:rest rdf:nil
80 N99fbe8ce5d564d85b4c37609385b775b rdf:first sg:person.016576730165.08
81 rdf:rest N367472b711464afe874feb2e5bb9afe3
82 N9fede2a8d98a45a686a4c0c57cce3711 schema:name doi
83 schema:value 10.1023/a:1006467431546
84 rdf:type schema:PropertyValue
85 Ne2470e700439419a8f6992a2a2a14a91 schema:volumeNumber 65
86 rdf:type schema:PublicationVolume
87 Nf9aee59de4244950bb42f879aee3f880 schema:issueNumber 1-2
88 rdf:type schema:PublicationIssue
89 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
90 schema:name Chemical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
93 schema:name Theoretical and Computational Chemistry
94 rdf:type schema:DefinedTerm
95 sg:journal.1095684 schema:issn 0167-6369
96 1573-2959
97 schema:name Environmental Monitoring and Assessment
98 schema:publisher Springer Nature
99 rdf:type schema:Periodical
100 sg:person.012560545423.41 schema:affiliation grid-institutes:grid.9026.d
101 schema:familyName Schlünzen
102 schema:givenName K. H.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41
104 rdf:type schema:Person
105 sg:person.013535206074.60 schema:affiliation grid-institutes:grid.9026.d
106 schema:familyName Müller
107 schema:givenName F.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013535206074.60
109 rdf:type schema:Person
110 sg:person.016576730165.08 schema:affiliation grid-institutes:grid.9026.d
111 schema:familyName Lenz
112 schema:givenName C.-J.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016576730165.08
114 rdf:type schema:Person
115 grid-institutes:grid.9026.d schema:alternateName >Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany
116 Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany
117 schema:name >Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany
118 Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...