Ontology type: schema:ScholarlyArticle
2000-11
AUTHORSC.-J. Lenz, F. Müller, K. H. Schlünzen
ABSTRACTUsing a high resolution meteorology-chemistry transport model, simulations were performed to estimate the sensitivity of the model results to nesting. The model results are compared with airplane measurements made during the TRACT field measuring campaign in September, 1992. For the meteorological part of the model the performance is enhanced using one-way nesting in a larger scale model, if the quality of the large scale driving data is sufficient. The sensitivity of the NOx concentration results with respect to nesting of chemical quantities is rather low due to the poor quality of the forcing data. A correct description of the emission rates and the meteorological conditions may be more important. For ozone, the best results can be achieved with either no nesting or a meteorological and chemical nested model simulation, which is again a result of the poor quality of the forcing data. More... »
PAGES287-295
http://scigraph.springernature.com/pub.10.1023/a:1006467431546
DOIhttp://dx.doi.org/10.1023/a:1006467431546
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1036015371
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Theoretical and Computational Chemistry",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": ">Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany",
"id": "http://www.grid.ac/institutes/grid.9026.d",
"name": [
">Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany"
],
"type": "Organization"
},
"familyName": "Lenz",
"givenName": "C.-J.",
"id": "sg:person.016576730165.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016576730165.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany",
"id": "http://www.grid.ac/institutes/grid.9026.d",
"name": [
"Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany"
],
"type": "Organization"
},
"familyName": "M\u00fcller",
"givenName": "F.",
"id": "sg:person.013535206074.60",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013535206074.60"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany",
"id": "http://www.grid.ac/institutes/grid.9026.d",
"name": [
"Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany"
],
"type": "Organization"
},
"familyName": "Schl\u00fcnzen",
"givenName": "K. H.",
"id": "sg:person.012560545423.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41"
],
"type": "Person"
}
],
"datePublished": "2000-11",
"datePublishedReg": "2000-11-01",
"description": "Using a high resolution meteorology-chemistry transport model, simulations were performed to estimate the sensitivity of the model results to nesting. The model results are compared with airplane measurements made during the TRACT field measuring campaign in September, 1992. For the meteorological part of the model the performance is enhanced using one-way nesting in a larger scale model, if the quality of the large scale driving data is sufficient. The sensitivity of the NOx concentration results with respect to nesting of chemical quantities is rather low due to the poor quality of the forcing data. A correct description of the emission rates and the meteorological conditions may be more important. For ozone, the best results can be achieved with either no nesting or a meteorological and chemical nested model simulation, which is again a result of the poor quality of the forcing data.",
"genre": "article",
"id": "sg:pub.10.1023/a:1006467431546",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1095684",
"issn": [
"0167-6369",
"1573-2959"
],
"name": "Environmental Monitoring and Assessment",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1-2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "65"
}
],
"keywords": [
"chemistry transport model",
"chemical quantities",
"mesoscale chemistry transport model",
"meteorological part",
"correct description",
"transport model",
"NOx concentrations",
"ozone",
"large-scale driving data",
"emission rates",
"sensitivity",
"concentration",
"measurements",
"better results",
"quantity",
"simulations",
"results",
"conditions",
"performance",
"values",
"respect",
"field",
"model simulations",
"meteorological conditions",
"rate",
"data",
"model results",
"airplane measurements",
"model",
"description",
"quality",
"part",
"large-scale models",
"campaign",
"scale model",
"poor quality",
"one-way",
"nesting",
"boundary values",
"driving data"
],
"name": "The Sensitivity of Mesoscale Chemistry Transport Model Results to Boundary Values",
"pagination": "287-295",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1036015371"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1006467431546"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1006467431546",
"https://app.dimensions.ai/details/publication/pub.1036015371"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_318.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1023/a:1006467431546"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1006467431546'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1006467431546'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1006467431546'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1006467431546'
This table displays all metadata directly associated to this object as RDF triples.
114 TRIPLES
21 PREDICATES
66 URIs
58 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1023/a:1006467431546 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0307 |
3 | ″ | schema:author | Na388b7cb93e441daa03262b49edb30aa |
4 | ″ | schema:datePublished | 2000-11 |
5 | ″ | schema:datePublishedReg | 2000-11-01 |
6 | ″ | schema:description | Using a high resolution meteorology-chemistry transport model, simulations were performed to estimate the sensitivity of the model results to nesting. The model results are compared with airplane measurements made during the TRACT field measuring campaign in September, 1992. For the meteorological part of the model the performance is enhanced using one-way nesting in a larger scale model, if the quality of the large scale driving data is sufficient. The sensitivity of the NOx concentration results with respect to nesting of chemical quantities is rather low due to the poor quality of the forcing data. A correct description of the emission rates and the meteorological conditions may be more important. For ozone, the best results can be achieved with either no nesting or a meteorological and chemical nested model simulation, which is again a result of the poor quality of the forcing data. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N0c9d9a62e6304d7b9b5a9c117271f1cb |
11 | ″ | ″ | Nf8a0663ffa23498ba8d9ec8409d8b31d |
12 | ″ | ″ | sg:journal.1095684 |
13 | ″ | schema:keywords | NOx concentrations |
14 | ″ | ″ | airplane measurements |
15 | ″ | ″ | better results |
16 | ″ | ″ | boundary values |
17 | ″ | ″ | campaign |
18 | ″ | ″ | chemical quantities |
19 | ″ | ″ | chemistry transport model |
20 | ″ | ″ | concentration |
21 | ″ | ″ | conditions |
22 | ″ | ″ | correct description |
23 | ″ | ″ | data |
24 | ″ | ″ | description |
25 | ″ | ″ | driving data |
26 | ″ | ″ | emission rates |
27 | ″ | ″ | field |
28 | ″ | ″ | large-scale driving data |
29 | ″ | ″ | large-scale models |
30 | ″ | ″ | measurements |
31 | ″ | ″ | mesoscale chemistry transport model |
32 | ″ | ″ | meteorological conditions |
33 | ″ | ″ | meteorological part |
34 | ″ | ″ | model |
35 | ″ | ″ | model results |
36 | ″ | ″ | model simulations |
37 | ″ | ″ | nesting |
38 | ″ | ″ | one-way |
39 | ″ | ″ | ozone |
40 | ″ | ″ | part |
41 | ″ | ″ | performance |
42 | ″ | ″ | poor quality |
43 | ″ | ″ | quality |
44 | ″ | ″ | quantity |
45 | ″ | ″ | rate |
46 | ″ | ″ | respect |
47 | ″ | ″ | results |
48 | ″ | ″ | scale model |
49 | ″ | ″ | sensitivity |
50 | ″ | ″ | simulations |
51 | ″ | ″ | transport model |
52 | ″ | ″ | values |
53 | ″ | schema:name | The Sensitivity of Mesoscale Chemistry Transport Model Results to Boundary Values |
54 | ″ | schema:pagination | 287-295 |
55 | ″ | schema:productId | N890648fe1f314fc796377c3b3fb45ea8 |
56 | ″ | ″ | N8e39d3e57dd5406688e6484c1ed52bc8 |
57 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1036015371 |
58 | ″ | ″ | https://doi.org/10.1023/a:1006467431546 |
59 | ″ | schema:sdDatePublished | 2022-05-20T07:21 |
60 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
61 | ″ | schema:sdPublisher | Nd4a23cceceab450fb0c81506e14e69ae |
62 | ″ | schema:url | https://doi.org/10.1023/a:1006467431546 |
63 | ″ | sgo:license | sg:explorer/license/ |
64 | ″ | sgo:sdDataset | articles |
65 | ″ | rdf:type | schema:ScholarlyArticle |
66 | N0c9d9a62e6304d7b9b5a9c117271f1cb | schema:issueNumber | 1-2 |
67 | ″ | rdf:type | schema:PublicationIssue |
68 | N1b0ff8ce924947fb9afc5fec7756302e | rdf:first | sg:person.012560545423.41 |
69 | ″ | rdf:rest | rdf:nil |
70 | N4d15a741a29a4269a7affe9a58d275d7 | rdf:first | sg:person.013535206074.60 |
71 | ″ | rdf:rest | N1b0ff8ce924947fb9afc5fec7756302e |
72 | N890648fe1f314fc796377c3b3fb45ea8 | schema:name | dimensions_id |
73 | ″ | schema:value | pub.1036015371 |
74 | ″ | rdf:type | schema:PropertyValue |
75 | N8e39d3e57dd5406688e6484c1ed52bc8 | schema:name | doi |
76 | ″ | schema:value | 10.1023/a:1006467431546 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | Na388b7cb93e441daa03262b49edb30aa | rdf:first | sg:person.016576730165.08 |
79 | ″ | rdf:rest | N4d15a741a29a4269a7affe9a58d275d7 |
80 | Nd4a23cceceab450fb0c81506e14e69ae | schema:name | Springer Nature - SN SciGraph project |
81 | ″ | rdf:type | schema:Organization |
82 | Nf8a0663ffa23498ba8d9ec8409d8b31d | schema:volumeNumber | 65 |
83 | ″ | rdf:type | schema:PublicationVolume |
84 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
85 | ″ | schema:name | Chemical Sciences |
86 | ″ | rdf:type | schema:DefinedTerm |
87 | anzsrc-for:0307 | schema:inDefinedTermSet | anzsrc-for: |
88 | ″ | schema:name | Theoretical and Computational Chemistry |
89 | ″ | rdf:type | schema:DefinedTerm |
90 | sg:journal.1095684 | schema:issn | 0167-6369 |
91 | ″ | ″ | 1573-2959 |
92 | ″ | schema:name | Environmental Monitoring and Assessment |
93 | ″ | schema:publisher | Springer Nature |
94 | ″ | rdf:type | schema:Periodical |
95 | sg:person.012560545423.41 | schema:affiliation | grid-institutes:grid.9026.d |
96 | ″ | schema:familyName | Schlünzen |
97 | ″ | schema:givenName | K. H. |
98 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41 |
99 | ″ | rdf:type | schema:Person |
100 | sg:person.013535206074.60 | schema:affiliation | grid-institutes:grid.9026.d |
101 | ″ | schema:familyName | Müller |
102 | ″ | schema:givenName | F. |
103 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013535206074.60 |
104 | ″ | rdf:type | schema:Person |
105 | sg:person.016576730165.08 | schema:affiliation | grid-institutes:grid.9026.d |
106 | ″ | schema:familyName | Lenz |
107 | ″ | schema:givenName | C.-J. |
108 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016576730165.08 |
109 | ″ | rdf:type | schema:Person |
110 | grid-institutes:grid.9026.d | schema:alternateName | >Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany |
111 | ″ | ″ | Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany |
112 | ″ | schema:name | >Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany |
113 | ″ | ″ | Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany |
114 | ″ | rdf:type | schema:Organization |