RNA degradation and models for post-transcriptional gene silencing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-06

AUTHORS

Frederick Meins

ABSTRACT

Post-transcriptional gene silencing (PTGS) is a form of stable but potentially reversible epigenetic modification, which frequently occurs in transgenic plants. The interaction in trans of genes with similar transcribed sequences results in sequence-specific degradation of RNAs derived from the genes involved. Highly expressed single-copy loci, transcribed inverted repeats, and poorly transcribed complex loci can act as sources of signals that trigger PTGS. In some cases, mobile, sequence-specific silencing signals can move from cell to cell or even over long distances in the plant. Several current models hold that silencing signals are `aberrant' RNAs (aRNA), which differ in some way from normal mRNAs. The most likely candidates are small antisense RNAs (asRNA) and double-stranded RNAs (dsRNA). Direct evidence that these or other aRNAs found in silent tissues can induce PTGS is still lacking. Most current models assume that silencing signals interact with target RNAs in a sequence-specific fashion. This results in degradation, usually in the cytoplasm, by exonucleolytic as well as endonucleolytic pathways, which are not necessarily PTGS-specific. Biochemical-switch models hold that the silent state is maintained by a positive auto-regulatory loop. One possibility is that concentrations of hypothetical silencing signals above a critical threshold trigger their own production by self-replication, by degradation of target RNAs, or by a combination of both mechanisms. These models can account for the stability, reversibility and multiplicity of silent states; the strong influence of transcription rate of target genes on the incidence and stability of silencing, and the amplification and systemic propagation of motile silencing signals. More... »

PAGES

261-273

References to SciGraph publications

  • 1997-05. Silencing of a β-1,3-glucanase transgene is overcome during seed formation in PLANT MOLECULAR BIOLOGY
  • 1997-02. Plants combat infection by gene silencing in NATURE
  • 1979-03-08. Viroid replication is inhibited by α-amanitin in NATURE
  • 1996-10. Control of mRNA stability in higher plants in PLANT MOLECULAR BIOLOGY
  • 1992-11. Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene in MOLECULAR GENETICS AND GENOMICS
  • 1995. Gene Silencing in Transgenic Plants: A Heuristic Autoregulation Model in GENE SILENCING IN HIGHER PLANTS AND RELATED PHENOMENA IN OTHER EUKARYOTES
  • 1997-11. Transgenic potato expressing a double-stranded RNA-specific ribonuclease is resistant to potato spindle tuber viroid in NATURE BIOTECHNOLOGY
  • 1995-08. Molecular and genetic analysis of nitrite reductase co-suppression in transgenic tobacco plants in MOLECULAR GENETICS AND GENOMICS
  • 1995-10. Field trial analysis of nitrate reductase co-suppression: a comparative study of 38 combinations of transgene loci in PLANT MOLECULAR BIOLOGY
  • 1999-05. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase in NATURE
  • 1995-07. Gene silencing in transgenic tobacco hybrids: frequency of the event and visualization of somatic inactivation pattern in MOLECULAR GENETICS AND GENOMICS
  • 1998-03. The effect of chimeric transgene architecture on co-ordinated gene silencing in PLANTA
  • 1998-05. A model for RNA-mediated gene silencing in higher plants in PLANT MOLECULAR BIOLOGY
  • 1994-11. Co-suppression of nitrate reductase host genes and transgenes in transgenic tobacco plants in MOLECULAR GENETICS AND GENOMICS
  • 1992-02. Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype in MOLECULAR GENETICS AND GENOMICS
  • 1997-10. Systemic signalling in gene silencing in NATURE
  • 1995-09-01. Instability of Transgene Expression in Field Grown Tobacco Carrying the csr1-1 Gene for Sulfonylurea Herbicide Resistance in NATURE BIOTECHNOLOGY
  • 1990-12. Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants in MOLECULAR GENETICS AND GENOMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1006443731515

    DOI

    http://dx.doi.org/10.1023/a:1006443731515

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026077928

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10999409


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Silencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA Processing, Post-Transcriptional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Plant", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "A Branch of the Novartis Research Foundation, Friedrich Miescher Institute, Postfach 2543, 4002, Basel, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.482245.d", 
              "name": [
                "A Branch of the Novartis Research Foundation, Friedrich Miescher Institute, Postfach 2543, 4002, Basel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meins", 
            "givenName": "Frederick", 
            "id": "sg:person.01136614547.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136614547.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/20215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038481561", 
              "https://doi.org/10.1038/20215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00279359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052403304", 
              "https://doi.org/10.1007/bf00279359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00292701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034591291", 
              "https://doi.org/10.1007/bf00292701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-79145-1_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018219275", 
              "https://doi.org/10.1007/978-3-642-79145-1_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00279570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006606157", 
              "https://doi.org/10.1007/bf00279570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00039377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013707525", 
              "https://doi.org/10.1007/bf00039377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02191598", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031609900", 
              "https://doi.org/10.1007/bf02191598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00262443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020763717", 
              "https://doi.org/10.1007/bf00262443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/278185a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030490482", 
              "https://doi.org/10.1038/278185a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004250050284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011314300", 
              "https://doi.org/10.1007/s004250050284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/39215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037604014", 
              "https://doi.org/10.1038/39215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00019126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031538144", 
              "https://doi.org/10.1007/bf00019126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1197-1290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026809975", 
              "https://doi.org/10.1038/nbt1197-1290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005882106266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000768247", 
              "https://doi.org/10.1023/a:1005882106266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/385781a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044522927", 
              "https://doi.org/10.1038/385781a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005946720438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041456394", 
              "https://doi.org/10.1023/a:1005946720438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0995-994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038656268", 
              "https://doi.org/10.1038/nbt0995-994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00287099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027407734", 
              "https://doi.org/10.1007/bf00287099"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-06", 
        "datePublishedReg": "2000-06-01", 
        "description": "Post-transcriptional gene silencing (PTGS) is a form of stable but potentially reversible epigenetic modification, which frequently occurs in transgenic plants. The interaction in trans of genes with similar transcribed sequences results in sequence-specific degradation of RNAs derived from the genes involved. Highly expressed single-copy loci, transcribed inverted repeats, and poorly transcribed complex loci can act as sources of signals that trigger PTGS. In some cases, mobile, sequence-specific silencing signals can move from cell to cell or even over long distances in the plant. Several current models hold that silencing signals are `aberrant' RNAs (aRNA), which differ in some way from normal mRNAs. The most likely candidates are small antisense RNAs (asRNA) and double-stranded RNAs (dsRNA). Direct evidence that these or other aRNAs found in silent tissues can induce PTGS is still lacking. Most current models assume that silencing signals interact with target RNAs in a sequence-specific fashion. This results in degradation, usually in the cytoplasm, by exonucleolytic as well as endonucleolytic pathways, which are not necessarily PTGS-specific. Biochemical-switch models hold that the silent state is maintained by a positive auto-regulatory loop. One possibility is that concentrations of hypothetical silencing signals above a critical threshold trigger their own production by self-replication, by degradation of target RNAs, or by a combination of both mechanisms. These models can account for the stability, reversibility and multiplicity of silent states; the strong influence of transcription rate of target genes on the incidence and stability of silencing, and the amplification and systemic propagation of motile silencing signals.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1006443731515", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1101246", 
            "issn": [
              "0167-4412", 
              "1573-5028"
            ], 
            "name": "Plant Molecular Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "43"
          }
        ], 
        "keywords": [
          "post-transcriptional gene", 
          "target RNA", 
          "silent state", 
          "reversible epigenetic modification", 
          "single-copy loci", 
          "sequence-specific degradation", 
          "auto-regulatory loop", 
          "small antisense RNA", 
          "sequence-specific fashion", 
          "transgenic plants", 
          "epigenetic modifications", 
          "complex locus", 
          "target genes", 
          "RNA degradation", 
          "transcription rate", 
          "systemic propagation", 
          "antisense RNA", 
          "normal mRNA", 
          "genes", 
          "source of signals", 
          "RNA", 
          "positive auto-regulatory loop", 
          "sequence results", 
          "PTGS", 
          "silent tissue", 
          "loci", 
          "plants", 
          "current models", 
          "likely candidate", 
          "direct evidence", 
          "cells", 
          "degradation", 
          "repeats", 
          "cytoplasm", 
          "aRNA", 
          "threshold trigger", 
          "mRNA", 
          "pathway", 
          "most current models", 
          "long distances", 
          "own production", 
          "signals", 
          "amplification", 
          "tissue", 
          "mechanism", 
          "production", 
          "trans", 
          "interaction", 
          "modification", 
          "strong influence", 
          "triggers", 
          "loop", 
          "evidence", 
          "fashion", 
          "candidates", 
          "stability", 
          "form", 
          "concentration", 
          "combination", 
          "source", 
          "distance", 
          "model", 
          "state", 
          "possibility", 
          "multiplicity", 
          "results", 
          "rate", 
          "influence", 
          "reversibility", 
          "propagation", 
          "way", 
          "incidence", 
          "cases"
        ], 
        "name": "RNA degradation and models for post-transcriptional gene silencing", 
        "pagination": "261-273", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026077928"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1006443731515"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10999409"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1006443731515", 
          "https://app.dimensions.ai/details/publication/pub.1026077928"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_327.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1006443731515"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1006443731515'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1006443731515'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1006443731515'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1006443731515'


     

    This table displays all metadata directly associated to this object as RDF triples.

    226 TRIPLES      21 PREDICATES      122 URIs      96 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1006443731515 schema:about N1ae35522781c4ec485e20af799c6ccb0
    2 N9a150f5d640843b795d6ba8feee82368
    3 Na5535d652ec54bfe8179dd0d35e1bc2c
    4 Nbe11c12d76d34dd6a25f79893a9468c4
    5 Ndb4c7bc05102432ba16d241147a91941
    6 anzsrc-for:06
    7 anzsrc-for:0604
    8 schema:author Nfb5336b6158145b5bb28c3cfa887d119
    9 schema:citation sg:pub.10.1007/978-3-642-79145-1_8
    10 sg:pub.10.1007/bf00019126
    11 sg:pub.10.1007/bf00039377
    12 sg:pub.10.1007/bf00262443
    13 sg:pub.10.1007/bf00279359
    14 sg:pub.10.1007/bf00279570
    15 sg:pub.10.1007/bf00287099
    16 sg:pub.10.1007/bf00292701
    17 sg:pub.10.1007/bf02191598
    18 sg:pub.10.1007/s004250050284
    19 sg:pub.10.1023/a:1005882106266
    20 sg:pub.10.1023/a:1005946720438
    21 sg:pub.10.1038/20215
    22 sg:pub.10.1038/278185a0
    23 sg:pub.10.1038/385781a0
    24 sg:pub.10.1038/39215
    25 sg:pub.10.1038/nbt0995-994
    26 sg:pub.10.1038/nbt1197-1290
    27 schema:datePublished 2000-06
    28 schema:datePublishedReg 2000-06-01
    29 schema:description Post-transcriptional gene silencing (PTGS) is a form of stable but potentially reversible epigenetic modification, which frequently occurs in transgenic plants. The interaction in trans of genes with similar transcribed sequences results in sequence-specific degradation of RNAs derived from the genes involved. Highly expressed single-copy loci, transcribed inverted repeats, and poorly transcribed complex loci can act as sources of signals that trigger PTGS. In some cases, mobile, sequence-specific silencing signals can move from cell to cell or even over long distances in the plant. Several current models hold that silencing signals are `aberrant' RNAs (aRNA), which differ in some way from normal mRNAs. The most likely candidates are small antisense RNAs (asRNA) and double-stranded RNAs (dsRNA). Direct evidence that these or other aRNAs found in silent tissues can induce PTGS is still lacking. Most current models assume that silencing signals interact with target RNAs in a sequence-specific fashion. This results in degradation, usually in the cytoplasm, by exonucleolytic as well as endonucleolytic pathways, which are not necessarily PTGS-specific. Biochemical-switch models hold that the silent state is maintained by a positive auto-regulatory loop. One possibility is that concentrations of hypothetical silencing signals above a critical threshold trigger their own production by self-replication, by degradation of target RNAs, or by a combination of both mechanisms. These models can account for the stability, reversibility and multiplicity of silent states; the strong influence of transcription rate of target genes on the incidence and stability of silencing, and the amplification and systemic propagation of motile silencing signals.
    30 schema:genre article
    31 schema:isAccessibleForFree false
    32 schema:isPartOf Nc483cd39b3964ba8af07fcca33212125
    33 Ne0241dc30d124ef5a2165a4b9e937ed3
    34 sg:journal.1101246
    35 schema:keywords PTGS
    36 RNA
    37 RNA degradation
    38 aRNA
    39 amplification
    40 antisense RNA
    41 auto-regulatory loop
    42 candidates
    43 cases
    44 cells
    45 combination
    46 complex locus
    47 concentration
    48 current models
    49 cytoplasm
    50 degradation
    51 direct evidence
    52 distance
    53 epigenetic modifications
    54 evidence
    55 fashion
    56 form
    57 genes
    58 incidence
    59 influence
    60 interaction
    61 likely candidate
    62 loci
    63 long distances
    64 loop
    65 mRNA
    66 mechanism
    67 model
    68 modification
    69 most current models
    70 multiplicity
    71 normal mRNA
    72 own production
    73 pathway
    74 plants
    75 positive auto-regulatory loop
    76 possibility
    77 post-transcriptional gene
    78 production
    79 propagation
    80 rate
    81 repeats
    82 results
    83 reversibility
    84 reversible epigenetic modification
    85 sequence results
    86 sequence-specific degradation
    87 sequence-specific fashion
    88 signals
    89 silent state
    90 silent tissue
    91 single-copy loci
    92 small antisense RNA
    93 source
    94 source of signals
    95 stability
    96 state
    97 strong influence
    98 systemic propagation
    99 target RNA
    100 target genes
    101 threshold trigger
    102 tissue
    103 trans
    104 transcription rate
    105 transgenic plants
    106 triggers
    107 way
    108 schema:name RNA degradation and models for post-transcriptional gene silencing
    109 schema:pagination 261-273
    110 schema:productId N63fee1344418465b81ceb28b34dfc938
    111 N9eb004c896464f28ad573e672b379415
    112 Ncb42bc00b9494fe7bb1734f4775f8ccf
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026077928
    114 https://doi.org/10.1023/a:1006443731515
    115 schema:sdDatePublished 2022-12-01T06:22
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher N838737a824e64c179fd4600819562376
    118 schema:url https://doi.org/10.1023/a:1006443731515
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N1ae35522781c4ec485e20af799c6ccb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name RNA, Plant
    124 rdf:type schema:DefinedTerm
    125 N63fee1344418465b81ceb28b34dfc938 schema:name dimensions_id
    126 schema:value pub.1026077928
    127 rdf:type schema:PropertyValue
    128 N838737a824e64c179fd4600819562376 schema:name Springer Nature - SN SciGraph project
    129 rdf:type schema:Organization
    130 N9a150f5d640843b795d6ba8feee82368 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Models, Genetic
    132 rdf:type schema:DefinedTerm
    133 N9eb004c896464f28ad573e672b379415 schema:name pubmed_id
    134 schema:value 10999409
    135 rdf:type schema:PropertyValue
    136 Na5535d652ec54bfe8179dd0d35e1bc2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Gene Silencing
    138 rdf:type schema:DefinedTerm
    139 Nbe11c12d76d34dd6a25f79893a9468c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name RNA Processing, Post-Transcriptional
    141 rdf:type schema:DefinedTerm
    142 Nc483cd39b3964ba8af07fcca33212125 schema:volumeNumber 43
    143 rdf:type schema:PublicationVolume
    144 Ncb42bc00b9494fe7bb1734f4775f8ccf schema:name doi
    145 schema:value 10.1023/a:1006443731515
    146 rdf:type schema:PropertyValue
    147 Ndb4c7bc05102432ba16d241147a91941 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Gene Expression Regulation, Plant
    149 rdf:type schema:DefinedTerm
    150 Ne0241dc30d124ef5a2165a4b9e937ed3 schema:issueNumber 2-3
    151 rdf:type schema:PublicationIssue
    152 Nfb5336b6158145b5bb28c3cfa887d119 rdf:first sg:person.01136614547.28
    153 rdf:rest rdf:nil
    154 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Biological Sciences
    156 rdf:type schema:DefinedTerm
    157 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Genetics
    159 rdf:type schema:DefinedTerm
    160 sg:journal.1101246 schema:issn 0167-4412
    161 1573-5028
    162 schema:name Plant Molecular Biology
    163 schema:publisher Springer Nature
    164 rdf:type schema:Periodical
    165 sg:person.01136614547.28 schema:affiliation grid-institutes:grid.482245.d
    166 schema:familyName Meins
    167 schema:givenName Frederick
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136614547.28
    169 rdf:type schema:Person
    170 sg:pub.10.1007/978-3-642-79145-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018219275
    171 https://doi.org/10.1007/978-3-642-79145-1_8
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/bf00019126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031538144
    174 https://doi.org/10.1007/bf00019126
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/bf00039377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013707525
    177 https://doi.org/10.1007/bf00039377
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/bf00262443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020763717
    180 https://doi.org/10.1007/bf00262443
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/bf00279359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052403304
    183 https://doi.org/10.1007/bf00279359
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/bf00279570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006606157
    186 https://doi.org/10.1007/bf00279570
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/bf00287099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027407734
    189 https://doi.org/10.1007/bf00287099
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/bf00292701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034591291
    192 https://doi.org/10.1007/bf00292701
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/bf02191598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031609900
    195 https://doi.org/10.1007/bf02191598
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s004250050284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011314300
    198 https://doi.org/10.1007/s004250050284
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1023/a:1005882106266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000768247
    201 https://doi.org/10.1023/a:1005882106266
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1023/a:1005946720438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041456394
    204 https://doi.org/10.1023/a:1005946720438
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/20215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038481561
    207 https://doi.org/10.1038/20215
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/278185a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030490482
    210 https://doi.org/10.1038/278185a0
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/385781a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044522927
    213 https://doi.org/10.1038/385781a0
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/39215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037604014
    216 https://doi.org/10.1038/39215
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nbt0995-994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038656268
    219 https://doi.org/10.1038/nbt0995-994
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nbt1197-1290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026809975
    222 https://doi.org/10.1038/nbt1197-1290
    223 rdf:type schema:CreativeWork
    224 grid-institutes:grid.482245.d schema:alternateName A Branch of the Novartis Research Foundation, Friedrich Miescher Institute, Postfach 2543, 4002, Basel, Switzerland
    225 schema:name A Branch of the Novartis Research Foundation, Friedrich Miescher Institute, Postfach 2543, 4002, Basel, Switzerland
    226 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...