A neural network based pattern recognition system for somatic embryos of Douglas fir View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-01

AUTHORS

Chun Zhang, Roger Timmis, Wei-Shou Hu

ABSTRACT

A pattern recognition system was developed to classify Douglas fir somatic embryos by employing an image analysis system and two neural network based classifiers. The contour of embryo images was segmented, digitalized and converted to numerical values after the discrete and fast Fourier transformation. These values, or Fourier features, along with some other shape factors, were used for embryo classification. The pattern recognition system used a hierarchical decision tree to classify Douglas fir embryos into three normal and one abnormal embryo classes. An accuracy of greater than 80% was achieved for normal embryos. This system provides an objective and efficient method of classifying embryos of Douglas fir. It will be a useful tool for kinetic studies and process optimization of conifer somatic embryogenesis. More... »

PAGES

25-35

References to SciGraph publications

  • 1996-07. Application of image analysis to fed-batch cultures of somatic embryos in IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY - PLANT
  • 1995. Somatic Embryogenesis in Douglas-fir (Pseudotsuga Menziesii) in SOMATIC EMBRYOGENESIS IN WOODY PLANTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1006287917534

    DOI

    http://dx.doi.org/10.1023/a:1006287917534

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045500829


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Agricultural and Veterinary Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0703", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Crop and Pasture Production", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Chun", 
            "id": "sg:person.01224656515.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224656515.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Weyerhaeuser Co., WTC-G30, P.O. Box 2999, 98477, Tacoma, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.439053.8", 
              "name": [
                "Weyerhaeuser Co., WTC-G30, P.O. Box 2999, 98477, Tacoma, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Timmis", 
            "givenName": "Roger", 
            "id": "sg:person.016140543055.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016140543055.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Wei-Shou", 
            "id": "sg:person.01064261433.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-011-0960-4_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047322615", 
              "https://doi.org/10.1007/978-94-011-0960-4_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02822765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036151564", 
              "https://doi.org/10.1007/bf02822765"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-01", 
        "datePublishedReg": "1999-01-01", 
        "description": "A pattern recognition system was developed to classify Douglas fir somatic embryos by employing an image analysis system and two neural network based classifiers. The contour of embryo images was segmented, digitalized and converted to numerical values after the discrete and fast Fourier transformation. These values, or Fourier features, along with some other shape factors, were used for embryo classification. The pattern recognition system used a hierarchical decision tree to classify Douglas fir embryos into three normal and one abnormal embryo classes. An accuracy of greater than 80% was achieved for normal embryos. This system provides an objective and efficient method of classifying embryos of Douglas fir. It will be a useful tool for kinetic studies and process optimization of conifer somatic embryogenesis.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1006287917534", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1123614", 
            "issn": [
              "0167-6857", 
              "1573-5044"
            ], 
            "name": "Plant Cell, Tissue and Organ Culture (PCTOC)", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "56"
          }
        ], 
        "keywords": [
          "pattern recognition system", 
          "recognition system", 
          "neural network", 
          "hierarchical decision tree", 
          "Fourier features", 
          "decision tree", 
          "embryo images", 
          "image analysis system", 
          "network", 
          "analysis system", 
          "efficient method", 
          "fast Fourier transformation", 
          "classifier", 
          "system", 
          "embryo classification", 
          "images", 
          "conifer somatic embryogenesis", 
          "classification", 
          "optimization", 
          "accuracy", 
          "process optimization", 
          "tool", 
          "features", 
          "Fourier transformation", 
          "trees", 
          "contours", 
          "numerical values", 
          "method", 
          "useful tool", 
          "class", 
          "transformation", 
          "fir", 
          "values", 
          "shape factor", 
          "study", 
          "factors", 
          "Douglas fir", 
          "embryos", 
          "somatic embryos", 
          "embryogenesis", 
          "normal embryos", 
          "kinetic studies", 
          "somatic embryogenesis", 
          "Douglas fir somatic embryos", 
          "fir somatic embryos", 
          "Douglas fir embryos", 
          "fir embryos", 
          "abnormal embryo classes", 
          "embryo classes"
        ], 
        "name": "A neural network based pattern recognition system for somatic embryos of Douglas fir", 
        "pagination": "25-35", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045500829"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1006287917534"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1006287917534", 
          "https://app.dimensions.ai/details/publication/pub.1045500829"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_328.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1006287917534"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1006287917534'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1006287917534'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1006287917534'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1006287917534'


     

    This table displays all metadata directly associated to this object as RDF triples.

    140 TRIPLES      22 PREDICATES      79 URIs      67 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1006287917534 schema:about anzsrc-for:06
    2 anzsrc-for:0607
    3 anzsrc-for:07
    4 anzsrc-for:0703
    5 schema:author N1e1a8f9517df42b0a9238ba2f4fe194b
    6 schema:citation sg:pub.10.1007/978-94-011-0960-4_19
    7 sg:pub.10.1007/bf02822765
    8 schema:datePublished 1999-01
    9 schema:datePublishedReg 1999-01-01
    10 schema:description A pattern recognition system was developed to classify Douglas fir somatic embryos by employing an image analysis system and two neural network based classifiers. The contour of embryo images was segmented, digitalized and converted to numerical values after the discrete and fast Fourier transformation. These values, or Fourier features, along with some other shape factors, were used for embryo classification. The pattern recognition system used a hierarchical decision tree to classify Douglas fir embryos into three normal and one abnormal embryo classes. An accuracy of greater than 80% was achieved for normal embryos. This system provides an objective and efficient method of classifying embryos of Douglas fir. It will be a useful tool for kinetic studies and process optimization of conifer somatic embryogenesis.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N717918733752409d81c44d936baa11c3
    15 Ne906aa41e60b4306922f7949f32c263b
    16 sg:journal.1123614
    17 schema:keywords Douglas fir
    18 Douglas fir embryos
    19 Douglas fir somatic embryos
    20 Fourier features
    21 Fourier transformation
    22 abnormal embryo classes
    23 accuracy
    24 analysis system
    25 class
    26 classification
    27 classifier
    28 conifer somatic embryogenesis
    29 contours
    30 decision tree
    31 efficient method
    32 embryo classes
    33 embryo classification
    34 embryo images
    35 embryogenesis
    36 embryos
    37 factors
    38 fast Fourier transformation
    39 features
    40 fir
    41 fir embryos
    42 fir somatic embryos
    43 hierarchical decision tree
    44 image analysis system
    45 images
    46 kinetic studies
    47 method
    48 network
    49 neural network
    50 normal embryos
    51 numerical values
    52 optimization
    53 pattern recognition system
    54 process optimization
    55 recognition system
    56 shape factor
    57 somatic embryogenesis
    58 somatic embryos
    59 study
    60 system
    61 tool
    62 transformation
    63 trees
    64 useful tool
    65 values
    66 schema:name A neural network based pattern recognition system for somatic embryos of Douglas fir
    67 schema:pagination 25-35
    68 schema:productId Ne8821aad459d46d7872e03094ee19085
    69 Nf7b70bfeafb349abb15e60a4fff17780
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045500829
    71 https://doi.org/10.1023/a:1006287917534
    72 schema:sdDatePublished 2022-01-01T18:10
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N3d97d91e083f4a2b8ca0ac706d10ddbe
    75 schema:url https://doi.org/10.1023/a:1006287917534
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N1c170a6740884fdbacf785a35ca09f1e rdf:first sg:person.016140543055.52
    80 rdf:rest Ne27b3fe8f3904e36986d6613edb5f629
    81 N1e1a8f9517df42b0a9238ba2f4fe194b rdf:first sg:person.01224656515.40
    82 rdf:rest N1c170a6740884fdbacf785a35ca09f1e
    83 N3d97d91e083f4a2b8ca0ac706d10ddbe schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 N717918733752409d81c44d936baa11c3 schema:volumeNumber 56
    86 rdf:type schema:PublicationVolume
    87 Ne27b3fe8f3904e36986d6613edb5f629 rdf:first sg:person.01064261433.49
    88 rdf:rest rdf:nil
    89 Ne8821aad459d46d7872e03094ee19085 schema:name dimensions_id
    90 schema:value pub.1045500829
    91 rdf:type schema:PropertyValue
    92 Ne906aa41e60b4306922f7949f32c263b schema:issueNumber 1
    93 rdf:type schema:PublicationIssue
    94 Nf7b70bfeafb349abb15e60a4fff17780 schema:name doi
    95 schema:value 10.1023/a:1006287917534
    96 rdf:type schema:PropertyValue
    97 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Biological Sciences
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Plant Biology
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Agricultural and Veterinary Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:0703 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Crop and Pasture Production
    108 rdf:type schema:DefinedTerm
    109 sg:journal.1123614 schema:issn 0167-6857
    110 1573-5044
    111 schema:name Plant Cell, Tissue and Organ Culture (PCTOC)
    112 schema:publisher Springer Nature
    113 rdf:type schema:Periodical
    114 sg:person.01064261433.49 schema:affiliation grid-institutes:grid.17635.36
    115 schema:familyName Hu
    116 schema:givenName Wei-Shou
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49
    118 rdf:type schema:Person
    119 sg:person.01224656515.40 schema:affiliation grid-institutes:grid.17635.36
    120 schema:familyName Zhang
    121 schema:givenName Chun
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224656515.40
    123 rdf:type schema:Person
    124 sg:person.016140543055.52 schema:affiliation grid-institutes:grid.439053.8
    125 schema:familyName Timmis
    126 schema:givenName Roger
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016140543055.52
    128 rdf:type schema:Person
    129 sg:pub.10.1007/978-94-011-0960-4_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047322615
    130 https://doi.org/10.1007/978-94-011-0960-4_19
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/bf02822765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036151564
    133 https://doi.org/10.1007/bf02822765
    134 rdf:type schema:CreativeWork
    135 grid-institutes:grid.17635.36 schema:alternateName Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA
    136 schema:name Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA
    137 rdf:type schema:Organization
    138 grid-institutes:grid.439053.8 schema:alternateName Weyerhaeuser Co., WTC-G30, P.O. Box 2999, 98477, Tacoma, WA, USA
    139 schema:name Weyerhaeuser Co., WTC-G30, P.O. Box 2999, 98477, Tacoma, WA, USA
    140 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...