Ontology type: schema:ScholarlyArticle
1999-08
AUTHORSPaula Casati, María F. Drincovich, Gerald E. Edwards, Carlos S. Andreo
ABSTRACTMalate is involved in various metabolic pathways, and there are several enzymes that metabolize it. One important malate metabolizing enzyme is NADP-malic enzyme (NADP-ME). NADP-ME functions in many different pathways in plants, having an important role in C4 photosynthesis where it releases the CO2 to be used in carbon fixation by Rubisco. Apart from this specialized role, NADP-ME is thought to fulfill diverse housekeeping functions because of its universal presence in different plant tissues. NADP-ME is induced after wounding or exposure to UV-B radiation. In this way, the enzyme is implicated in defense-related deposition of lignin by providing NADPH for the two NADPH-dependent reductive steps in monolignol biosynthesis. On the other hand, it can supply NADPH for flavonoid biosynthesis as many steps in the flavonoid biosynthesis pathway require reductive power. Pyruvate, another product of NADP-ME reaction, can be used for obtaining ATP through respiration in the mitochondria; and may serve as a precursor for synthesis of phosphoenolpyruvate (PEP). PEP is utilized in the shikimate pathway, leading to the synthesis of aromatic amino acids including phenylalanine, the common substrate for lignin and flavonoid synthesis. Moreover, NADP-ME can be involved in mechanisms producing NADPH for synthesis of activated oxygen species that are produced in order to kill or damage pathogens. In conclusion, an increase in the levels of NADP-ME could provide building blocks and energy for biosynthesis of defense compounds, suggesting a role of malate metabolism in plant defense. More... »
PAGES99-105
http://scigraph.springernature.com/pub.10.1023/a:1006209003096
DOIhttp://dx.doi.org/10.1023/a:1006209003096
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1053089970
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Plant Biology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Centro de Estudios Fotosint\u00e9ticos y Bioqu\u00edmicos, Rosario, Argentina",
"id": "http://www.grid.ac/institutes/grid.506344.0",
"name": [
"Centro de Estudios Fotosint\u00e9ticos y Bioqu\u00edmicos, Rosario, Argentina"
],
"type": "Organization"
},
"familyName": "Casati",
"givenName": "Paula",
"id": "sg:person.01361473622.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361473622.57"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centro de Estudios Fotosint\u00e9ticos y Bioqu\u00edmicos, Rosario, Argentina",
"id": "http://www.grid.ac/institutes/grid.506344.0",
"name": [
"Centro de Estudios Fotosint\u00e9ticos y Bioqu\u00edmicos, Rosario, Argentina"
],
"type": "Organization"
},
"familyName": "Drincovich",
"givenName": "Mar\u00eda F.",
"id": "sg:person.0657424310.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657424310.33"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Botany Department, Washington State University, 99164-4238, Pullman, Washington, USA",
"id": "http://www.grid.ac/institutes/grid.30064.31",
"name": [
"Botany Department, Washington State University, 99164-4238, Pullman, Washington, USA"
],
"type": "Organization"
},
"familyName": "Edwards",
"givenName": "Gerald E.",
"id": "sg:person.01334011265.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334011265.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centro de Estudios Fotosint\u00e9ticos y Bioqu\u00edmicos, Rosario, Argentina",
"id": "http://www.grid.ac/institutes/grid.506344.0",
"name": [
"Centro de Estudios Fotosint\u00e9ticos y Bioqu\u00edmicos, Rosario, Argentina"
],
"type": "Organization"
},
"familyName": "Andreo",
"givenName": "Carlos S.",
"id": "sg:person.0671355734.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671355734.95"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00019173",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032893630",
"https://doi.org/10.1007/bf00019173"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-1884-2_26",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016203154",
"https://doi.org/10.1007/978-94-011-1884-2_26"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-7091-6684-0_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017920616",
"https://doi.org/10.1007/978-3-7091-6684-0_13"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00221914",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011528615",
"https://doi.org/10.1007/bf00221914"
],
"type": "CreativeWork"
}
],
"datePublished": "1999-08",
"datePublishedReg": "1999-08-01",
"description": "Malate is involved in various metabolic pathways, and there are several enzymes that metabolize it. One important malate metabolizing enzyme is NADP-malic enzyme (NADP-ME). NADP-ME functions in many different pathways in plants, having an important role in C4 photosynthesis where it releases the CO2 to be used in carbon fixation by Rubisco. Apart from this specialized role, NADP-ME is thought to fulfill diverse housekeeping functions because of its universal presence in different plant tissues. NADP-ME is induced after wounding or exposure to UV-B radiation. In this way, the enzyme is implicated in defense-related deposition of lignin by providing NADPH for the two NADPH-dependent reductive steps in monolignol biosynthesis. On the other hand, it can supply NADPH for flavonoid biosynthesis as many steps in the flavonoid biosynthesis pathway require reductive power. Pyruvate, another product of NADP-ME reaction, can be used for obtaining ATP through respiration in the mitochondria; and may serve as a precursor for synthesis of phosphoenolpyruvate (PEP). PEP is utilized in the shikimate pathway, leading to the synthesis of aromatic amino acids including phenylalanine, the common substrate for lignin and flavonoid synthesis. Moreover, NADP-ME can be involved in mechanisms producing NADPH for synthesis of activated oxygen species that are produced in order to kill or damage pathogens. In conclusion, an increase in the levels of NADP-ME could provide building blocks and energy for biosynthesis of defense compounds, suggesting a role of malate metabolism in plant defense.",
"genre": "article",
"id": "sg:pub.10.1023/a:1006209003096",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1022986",
"issn": [
"0166-8595",
"1573-5079"
],
"name": "Photosynthesis Research",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "61"
}
],
"keywords": [
"NADP-malic enzyme",
"plant defense",
"malate metabolism",
"flavonoid biosynthesis pathway",
"different plant tissues",
"C4 photosynthesis",
"defense compounds",
"monolignol biosynthesis",
"flavonoid biosynthesis",
"biosynthesis pathway",
"housekeeping functions",
"shikimate pathway",
"carbon fixation",
"plant tissues",
"flavonoid synthesis",
"synthesis of phosphoenolpyruvate",
"aromatic amino acids",
"metabolic pathways",
"specialized role",
"amino acids",
"biosynthesis",
"reductive step",
"phosphoenolpyruvate",
"enzyme",
"oxygen species",
"pathway",
"common substrate",
"different pathways",
"reductive power",
"NADPH",
"malate",
"universal presence",
"Rubisco",
"metabolism",
"defense",
"important role",
"photosynthesis",
"building blocks",
"mitochondria",
"wounding",
"species",
"plants",
"role",
"ATP",
"pathogens",
"respiration",
"pyruvate",
"synthesis",
"phenylalanine",
"function",
"lignin",
"UV",
"tissue",
"acid",
"mechanism",
"substrate",
"precursors",
"deposition",
"step",
"fixation",
"presence",
"levels",
"compounds",
"CO2",
"power",
"exposure",
"products",
"energy",
"block",
"increase",
"reaction",
"radiation",
"order",
"way",
"hand",
"conclusion"
],
"name": "Malate metabolism by NADP-malic enzyme in plant defense",
"pagination": "99-105",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1053089970"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1006209003096"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1006209003096",
"https://app.dimensions.ai/details/publication/pub.1053089970"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:51",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_333.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1023/a:1006209003096"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1006209003096'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1006209003096'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1006209003096'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1006209003096'
This table displays all metadata directly associated to this object as RDF triples.
178 TRIPLES
22 PREDICATES
107 URIs
94 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1023/a:1006209003096 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0601 |
3 | ″ | ″ | anzsrc-for:0607 |
4 | ″ | schema:author | N6ca401a696c040c7a814f973cdc557cf |
5 | ″ | schema:citation | sg:pub.10.1007/978-3-7091-6684-0_13 |
6 | ″ | ″ | sg:pub.10.1007/978-94-011-1884-2_26 |
7 | ″ | ″ | sg:pub.10.1007/bf00019173 |
8 | ″ | ″ | sg:pub.10.1007/bf00221914 |
9 | ″ | schema:datePublished | 1999-08 |
10 | ″ | schema:datePublishedReg | 1999-08-01 |
11 | ″ | schema:description | Malate is involved in various metabolic pathways, and there are several enzymes that metabolize it. One important malate metabolizing enzyme is NADP-malic enzyme (NADP-ME). NADP-ME functions in many different pathways in plants, having an important role in C4 photosynthesis where it releases the CO2 to be used in carbon fixation by Rubisco. Apart from this specialized role, NADP-ME is thought to fulfill diverse housekeeping functions because of its universal presence in different plant tissues. NADP-ME is induced after wounding or exposure to UV-B radiation. In this way, the enzyme is implicated in defense-related deposition of lignin by providing NADPH for the two NADPH-dependent reductive steps in monolignol biosynthesis. On the other hand, it can supply NADPH for flavonoid biosynthesis as many steps in the flavonoid biosynthesis pathway require reductive power. Pyruvate, another product of NADP-ME reaction, can be used for obtaining ATP through respiration in the mitochondria; and may serve as a precursor for synthesis of phosphoenolpyruvate (PEP). PEP is utilized in the shikimate pathway, leading to the synthesis of aromatic amino acids including phenylalanine, the common substrate for lignin and flavonoid synthesis. Moreover, NADP-ME can be involved in mechanisms producing NADPH for synthesis of activated oxygen species that are produced in order to kill or damage pathogens. In conclusion, an increase in the levels of NADP-ME could provide building blocks and energy for biosynthesis of defense compounds, suggesting a role of malate metabolism in plant defense. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N736c4be6128e4b5b9974f7e7a9f09a11 |
16 | ″ | ″ | Nc274242ca3cf499f8900522247e95d6f |
17 | ″ | ″ | sg:journal.1022986 |
18 | ″ | schema:keywords | ATP |
19 | ″ | ″ | C4 photosynthesis |
20 | ″ | ″ | CO2 |
21 | ″ | ″ | NADP-malic enzyme |
22 | ″ | ″ | NADPH |
23 | ″ | ″ | Rubisco |
24 | ″ | ″ | UV |
25 | ″ | ″ | acid |
26 | ″ | ″ | amino acids |
27 | ″ | ″ | aromatic amino acids |
28 | ″ | ″ | biosynthesis |
29 | ″ | ″ | biosynthesis pathway |
30 | ″ | ″ | block |
31 | ″ | ″ | building blocks |
32 | ″ | ″ | carbon fixation |
33 | ″ | ″ | common substrate |
34 | ″ | ″ | compounds |
35 | ″ | ″ | conclusion |
36 | ″ | ″ | defense |
37 | ″ | ″ | defense compounds |
38 | ″ | ″ | deposition |
39 | ″ | ″ | different pathways |
40 | ″ | ″ | different plant tissues |
41 | ″ | ″ | energy |
42 | ″ | ″ | enzyme |
43 | ″ | ″ | exposure |
44 | ″ | ″ | fixation |
45 | ″ | ″ | flavonoid biosynthesis |
46 | ″ | ″ | flavonoid biosynthesis pathway |
47 | ″ | ″ | flavonoid synthesis |
48 | ″ | ″ | function |
49 | ″ | ″ | hand |
50 | ″ | ″ | housekeeping functions |
51 | ″ | ″ | important role |
52 | ″ | ″ | increase |
53 | ″ | ″ | levels |
54 | ″ | ″ | lignin |
55 | ″ | ″ | malate |
56 | ″ | ″ | malate metabolism |
57 | ″ | ″ | mechanism |
58 | ″ | ″ | metabolic pathways |
59 | ″ | ″ | metabolism |
60 | ″ | ″ | mitochondria |
61 | ″ | ″ | monolignol biosynthesis |
62 | ″ | ″ | order |
63 | ″ | ″ | oxygen species |
64 | ″ | ″ | pathogens |
65 | ″ | ″ | pathway |
66 | ″ | ″ | phenylalanine |
67 | ″ | ″ | phosphoenolpyruvate |
68 | ″ | ″ | photosynthesis |
69 | ″ | ″ | plant defense |
70 | ″ | ″ | plant tissues |
71 | ″ | ″ | plants |
72 | ″ | ″ | power |
73 | ″ | ″ | precursors |
74 | ″ | ″ | presence |
75 | ″ | ″ | products |
76 | ″ | ″ | pyruvate |
77 | ″ | ″ | radiation |
78 | ″ | ″ | reaction |
79 | ″ | ″ | reductive power |
80 | ″ | ″ | reductive step |
81 | ″ | ″ | respiration |
82 | ″ | ″ | role |
83 | ″ | ″ | shikimate pathway |
84 | ″ | ″ | specialized role |
85 | ″ | ″ | species |
86 | ″ | ″ | step |
87 | ″ | ″ | substrate |
88 | ″ | ″ | synthesis |
89 | ″ | ″ | synthesis of phosphoenolpyruvate |
90 | ″ | ″ | tissue |
91 | ″ | ″ | universal presence |
92 | ″ | ″ | way |
93 | ″ | ″ | wounding |
94 | ″ | schema:name | Malate metabolism by NADP-malic enzyme in plant defense |
95 | ″ | schema:pagination | 99-105 |
96 | ″ | schema:productId | Na28ec753ce98403f90b31b5765ec4cdf |
97 | ″ | ″ | Nf92ca8376ebd42f4b87171d706604dd3 |
98 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1053089970 |
99 | ″ | ″ | https://doi.org/10.1023/a:1006209003096 |
100 | ″ | schema:sdDatePublished | 2022-05-10T09:51 |
101 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
102 | ″ | schema:sdPublisher | Nbb9d34eb0122417cacdbb1236f9cd495 |
103 | ″ | schema:url | https://doi.org/10.1023/a:1006209003096 |
104 | ″ | sgo:license | sg:explorer/license/ |
105 | ″ | sgo:sdDataset | articles |
106 | ″ | rdf:type | schema:ScholarlyArticle |
107 | N6ca401a696c040c7a814f973cdc557cf | rdf:first | sg:person.01361473622.57 |
108 | ″ | rdf:rest | Nb909dfa137984041bdfed278172fad80 |
109 | N70bd5b6363d448a087dbb5aef8d63086 | rdf:first | sg:person.0671355734.95 |
110 | ″ | rdf:rest | rdf:nil |
111 | N736c4be6128e4b5b9974f7e7a9f09a11 | schema:issueNumber | 2 |
112 | ″ | rdf:type | schema:PublicationIssue |
113 | Na1e21500cafa444fa4e63fbc0217deb1 | rdf:first | sg:person.01334011265.02 |
114 | ″ | rdf:rest | N70bd5b6363d448a087dbb5aef8d63086 |
115 | Na28ec753ce98403f90b31b5765ec4cdf | schema:name | dimensions_id |
116 | ″ | schema:value | pub.1053089970 |
117 | ″ | rdf:type | schema:PropertyValue |
118 | Nb909dfa137984041bdfed278172fad80 | rdf:first | sg:person.0657424310.33 |
119 | ″ | rdf:rest | Na1e21500cafa444fa4e63fbc0217deb1 |
120 | Nbb9d34eb0122417cacdbb1236f9cd495 | schema:name | Springer Nature - SN SciGraph project |
121 | ″ | rdf:type | schema:Organization |
122 | Nc274242ca3cf499f8900522247e95d6f | schema:volumeNumber | 61 |
123 | ″ | rdf:type | schema:PublicationVolume |
124 | Nf92ca8376ebd42f4b87171d706604dd3 | schema:name | doi |
125 | ″ | schema:value | 10.1023/a:1006209003096 |
126 | ″ | rdf:type | schema:PropertyValue |
127 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Biological Sciences |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | anzsrc-for:0601 | schema:inDefinedTermSet | anzsrc-for: |
131 | ″ | schema:name | Biochemistry and Cell Biology |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | anzsrc-for:0607 | schema:inDefinedTermSet | anzsrc-for: |
134 | ″ | schema:name | Plant Biology |
135 | ″ | rdf:type | schema:DefinedTerm |
136 | sg:journal.1022986 | schema:issn | 0166-8595 |
137 | ″ | ″ | 1573-5079 |
138 | ″ | schema:name | Photosynthesis Research |
139 | ″ | schema:publisher | Springer Nature |
140 | ″ | rdf:type | schema:Periodical |
141 | sg:person.01334011265.02 | schema:affiliation | grid-institutes:grid.30064.31 |
142 | ″ | schema:familyName | Edwards |
143 | ″ | schema:givenName | Gerald E. |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334011265.02 |
145 | ″ | rdf:type | schema:Person |
146 | sg:person.01361473622.57 | schema:affiliation | grid-institutes:grid.506344.0 |
147 | ″ | schema:familyName | Casati |
148 | ″ | schema:givenName | Paula |
149 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361473622.57 |
150 | ″ | rdf:type | schema:Person |
151 | sg:person.0657424310.33 | schema:affiliation | grid-institutes:grid.506344.0 |
152 | ″ | schema:familyName | Drincovich |
153 | ″ | schema:givenName | María F. |
154 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657424310.33 |
155 | ″ | rdf:type | schema:Person |
156 | sg:person.0671355734.95 | schema:affiliation | grid-institutes:grid.506344.0 |
157 | ″ | schema:familyName | Andreo |
158 | ″ | schema:givenName | Carlos S. |
159 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671355734.95 |
160 | ″ | rdf:type | schema:Person |
161 | sg:pub.10.1007/978-3-7091-6684-0_13 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017920616 |
162 | ″ | ″ | https://doi.org/10.1007/978-3-7091-6684-0_13 |
163 | ″ | rdf:type | schema:CreativeWork |
164 | sg:pub.10.1007/978-94-011-1884-2_26 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016203154 |
165 | ″ | ″ | https://doi.org/10.1007/978-94-011-1884-2_26 |
166 | ″ | rdf:type | schema:CreativeWork |
167 | sg:pub.10.1007/bf00019173 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032893630 |
168 | ″ | ″ | https://doi.org/10.1007/bf00019173 |
169 | ″ | rdf:type | schema:CreativeWork |
170 | sg:pub.10.1007/bf00221914 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1011528615 |
171 | ″ | ″ | https://doi.org/10.1007/bf00221914 |
172 | ″ | rdf:type | schema:CreativeWork |
173 | grid-institutes:grid.30064.31 | schema:alternateName | Botany Department, Washington State University, 99164-4238, Pullman, Washington, USA |
174 | ″ | schema:name | Botany Department, Washington State University, 99164-4238, Pullman, Washington, USA |
175 | ″ | rdf:type | schema:Organization |
176 | grid-institutes:grid.506344.0 | schema:alternateName | Centro de Estudios Fotosintéticos y Bioquímicos, Rosario, Argentina |
177 | ″ | schema:name | Centro de Estudios Fotosintéticos y Bioquímicos, Rosario, Argentina |
178 | ″ | rdf:type | schema:Organization |