Elevated CO2 and nutrient addition after soil N cycling and N trace gas fluxes with early season wet-up in a ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-05

AUTHORS

BRUCE A. HUNGATE, CHRISTOPHER P. LUND, HOLLY L. PEARSON, F. STUART CHAPIN

ABSTRACT

We examined the effects of growth carbon dioxide (CO2)concentration and soil nutrient availability on nitrogen (N)transformations and N trace gas fluxes in California grasslandmicrocosms during early-season wet-up, a time when rates of Ntransformation and N trace gas flux are high. After plant senescenceand summer drought, we simulated the first fall rains and examined Ncycling. Growth at elevated CO2 increased root productionand root carbon:nitrogen ratio. Under nutrient enrichment, elevatedCO2 increased microbial N immobilization during wet-up,leading to a 43% reduction in gross nitrification anda 55% reduction in NO emission from soil. ElevatedCO2 increased microbial N immobilization at ambientnutrients, but did not alter nitrification or NO emission. ElevatedCO2 did not alter soil emission of N2O ateither nutrient level. Addition of NPK fertilizer (1:1:1) stimulatedN mineralization and nitrification, leading to increased N2Oand NO emission from soil. The results of our study support a mechanisticmodel in which elevated CO2 alters soil N cycling and NOemission: increased root production and increased C:N ratio in elevatedCO2 stimulate N immobilization, thereby decreasingnitrification and associated NO emission when nutrients are abundant.This model is consistent with our basic understanding of how C availabilityinfluences soil N cycling and thus may apply to many terrestrial ecosystems. More... »

PAGES

89-109

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1005747123463

DOI

http://dx.doi.org/10.1023/a:1005747123463

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017297089


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Integrative Biology, University of California, 94720, Berkeley, CA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Integrative Biology, University of California, 94720, Berkeley, CA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "HUNGATE", 
        "givenName": "BRUCE A.", 
        "id": "sg:person.01360372627.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360372627.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological Sciences, Stanford University, 94305, Stanford, CA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Plant Biology, Carnegie Institution of Washington, 94305, Stanford, CA", 
            "Department of Biological Sciences, Stanford University, 94305, Stanford, CA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LUND", 
        "givenName": "CHRISTOPHER P.", 
        "id": "sg:person.016313514243.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016313514243.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological Sciences, Stanford University, 94305, Stanford, CA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Biological Sciences, Stanford University, 94305, Stanford, CA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "PEARSON", 
        "givenName": "HOLLY L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Integrative Biology, University of California, 94720, Berkeley, CA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Integrative Biology, University of California, 94720, Berkeley, CA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "CHAPIN", 
        "givenName": "F. STUART", 
        "id": "sg:person.013453013723.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013453013723.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00260513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014117028", 
          "https://doi.org/10.1007/bf00260513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/344529a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049611018", 
          "https://doi.org/10.1038/344529a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/370047a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026623245", 
          "https://doi.org/10.1038/370047a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00379101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035082433", 
          "https://doi.org/10.1007/bf00379101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00033948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027302254", 
          "https://doi.org/10.1007/bf00033948"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-05", 
    "datePublishedReg": "1997-05-01", 
    "description": "We examined the effects of growth carbon dioxide (CO2)concentration and soil nutrient availability on nitrogen (N)transformations and N trace gas fluxes in California grasslandmicrocosms during early-season wet-up, a time when rates of Ntransformation and N trace gas flux are high. After plant senescenceand summer drought, we simulated the first fall rains and examined Ncycling. Growth at elevated CO2 increased root productionand root carbon:nitrogen ratio. Under nutrient enrichment, elevatedCO2 increased microbial N immobilization during wet-up,leading to a 43% reduction in gross nitrification anda 55% reduction in NO emission from soil. ElevatedCO2 increased microbial N immobilization at ambientnutrients, but did not alter nitrification or NO emission. ElevatedCO2 did not alter soil emission of N2O ateither nutrient level. Addition of NPK fertilizer (1:1:1) stimulatedN mineralization and nitrification, leading to increased N2Oand NO emission from soil. The results of our study support a mechanisticmodel in which elevated CO2 alters soil N cycling and NOemission: increased root production and increased C:N ratio in elevatedCO2 stimulate N immobilization, thereby decreasingnitrification and associated NO emission when nutrients are abundant.This model is consistent with our basic understanding of how C availabilityinfluences soil N cycling and thus may apply to many terrestrial ecosystems.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1005747123463", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1124434", 
        "issn": [
          "0168-2563", 
          "1573-515X"
        ], 
        "name": "Biogeochemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "keywords": [
      "trace gas fluxes", 
      "soil N cycling", 
      "gas fluxes", 
      "elevated CO2", 
      "soil nutrient availability", 
      "California annual grassland", 
      "annual grassland", 
      "soil emissions", 
      "terrestrial ecosystems", 
      "root carbon", 
      "nutrient enrichment", 
      "nutrient availability", 
      "CO2 alters", 
      "nutrient addition", 
      "fall rains", 
      "summer drought", 
      "root production", 
      "nutrient levels", 
      "NO emissions", 
      "nitrogen ratio", 
      "soil", 
      "cycling", 
      "elevatedCO2", 
      "early season", 
      "nitrification", 
      "carbon dioxide", 
      "NOemission", 
      "grassland", 
      "ecosystems", 
      "emission", 
      "flux", 
      "drought", 
      "CO2", 
      "nutrients", 
      "immobilization", 
      "mineralization", 
      "carbon", 
      "rain", 
      "season", 
      "nitrogen", 
      "availability", 
      "enrichment", 
      "basic understanding", 
      "growth", 
      "alters", 
      "dioxide", 
      "production", 
      "addition", 
      "understanding", 
      "reduction", 
      "ratio", 
      "effect", 
      "levels", 
      "rate", 
      "study", 
      "results", 
      "model", 
      "time", 
      "growth carbon dioxide", 
      "California grasslandmicrocosms", 
      "grasslandmicrocosms", 
      "rates of Ntransformation", 
      "Ntransformation", 
      "plant senescenceand summer drought", 
      "senescenceand summer drought", 
      "first fall rains", 
      "Ncycling", 
      "root productionand root carbon", 
      "productionand root carbon", 
      "gross nitrification anda 55", 
      "nitrification anda 55", 
      "anda 55", 
      "ambientnutrients", 
      "ateither nutrient level", 
      "NPK fertilizer (1:1:1) stimulatedN mineralization", 
      "fertilizer (1:1:1) stimulatedN mineralization", 
      "stimulatedN mineralization", 
      "N2Oand NO emission", 
      "mechanisticmodel", 
      "decreasingnitrification", 
      "availabilityinfluences soil N cycling", 
      "N cycling"
    ], 
    "name": "Elevated CO2 and nutrient addition after soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland", 
    "pagination": "89-109", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017297089"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1005747123463"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1005747123463", 
      "https://app.dimensions.ai/details/publication/pub.1017297089"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_267.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1005747123463"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1005747123463'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1005747123463'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1005747123463'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1005747123463'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      22 PREDICATES      115 URIs      100 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1005747123463 schema:about anzsrc-for:03
2 anzsrc-for:0399
3 anzsrc-for:05
4 anzsrc-for:0503
5 schema:author N71f348705c4048dfb4d408de5a9b58c4
6 schema:citation sg:pub.10.1007/bf00033948
7 sg:pub.10.1007/bf00260513
8 sg:pub.10.1007/bf00379101
9 sg:pub.10.1038/344529a0
10 sg:pub.10.1038/370047a0
11 schema:datePublished 1997-05
12 schema:datePublishedReg 1997-05-01
13 schema:description We examined the effects of growth carbon dioxide (CO2)concentration and soil nutrient availability on nitrogen (N)transformations and N trace gas fluxes in California grasslandmicrocosms during early-season wet-up, a time when rates of Ntransformation and N trace gas flux are high. After plant senescenceand summer drought, we simulated the first fall rains and examined Ncycling. Growth at elevated CO2 increased root productionand root carbon:nitrogen ratio. Under nutrient enrichment, elevatedCO2 increased microbial N immobilization during wet-up,leading to a 43% reduction in gross nitrification anda 55% reduction in NO emission from soil. ElevatedCO2 increased microbial N immobilization at ambientnutrients, but did not alter nitrification or NO emission. ElevatedCO2 did not alter soil emission of N2O ateither nutrient level. Addition of NPK fertilizer (1:1:1) stimulatedN mineralization and nitrification, leading to increased N2Oand NO emission from soil. The results of our study support a mechanisticmodel in which elevated CO2 alters soil N cycling and NOemission: increased root production and increased C:N ratio in elevatedCO2 stimulate N immobilization, thereby decreasingnitrification and associated NO emission when nutrients are abundant.This model is consistent with our basic understanding of how C availabilityinfluences soil N cycling and thus may apply to many terrestrial ecosystems.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N8b4ebce8c35e47088e7f4f5522f85920
18 Na2b11daad3414502a059ac3932b8335d
19 sg:journal.1124434
20 schema:keywords CO2
21 CO2 alters
22 California annual grassland
23 California grasslandmicrocosms
24 N cycling
25 N2Oand NO emission
26 NO emissions
27 NOemission
28 NPK fertilizer (1:1:1) stimulatedN mineralization
29 Ncycling
30 Ntransformation
31 addition
32 alters
33 ambientnutrients
34 anda 55
35 annual grassland
36 ateither nutrient level
37 availability
38 availabilityinfluences soil N cycling
39 basic understanding
40 carbon
41 carbon dioxide
42 cycling
43 decreasingnitrification
44 dioxide
45 drought
46 early season
47 ecosystems
48 effect
49 elevated CO2
50 elevatedCO2
51 emission
52 enrichment
53 fall rains
54 fertilizer (1:1:1) stimulatedN mineralization
55 first fall rains
56 flux
57 gas fluxes
58 grassland
59 grasslandmicrocosms
60 gross nitrification anda 55
61 growth
62 growth carbon dioxide
63 immobilization
64 levels
65 mechanisticmodel
66 mineralization
67 model
68 nitrification
69 nitrification anda 55
70 nitrogen
71 nitrogen ratio
72 nutrient addition
73 nutrient availability
74 nutrient enrichment
75 nutrient levels
76 nutrients
77 plant senescenceand summer drought
78 production
79 productionand root carbon
80 rain
81 rate
82 rates of Ntransformation
83 ratio
84 reduction
85 results
86 root carbon
87 root production
88 root productionand root carbon
89 season
90 senescenceand summer drought
91 soil
92 soil N cycling
93 soil emissions
94 soil nutrient availability
95 stimulatedN mineralization
96 study
97 summer drought
98 terrestrial ecosystems
99 time
100 trace gas fluxes
101 understanding
102 schema:name Elevated CO2 and nutrient addition after soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland
103 schema:pagination 89-109
104 schema:productId N7bcb101b614f4c46a4fae3d2ce3d9ff6
105 Nae7c4044fd024b26bfe442a3eed46a3e
106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017297089
107 https://doi.org/10.1023/a:1005747123463
108 schema:sdDatePublished 2021-11-01T18:01
109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
110 schema:sdPublisher Nd58fb0c593c64e1fac304e6cbb5323eb
111 schema:url https://doi.org/10.1023/a:1005747123463
112 sgo:license sg:explorer/license/
113 sgo:sdDataset articles
114 rdf:type schema:ScholarlyArticle
115 N67a728a8a46b41e7b769ffbedd9262e8 rdf:first sg:person.013453013723.17
116 rdf:rest rdf:nil
117 N6eb25ba4755f4de4994e5714e037bb52 schema:affiliation grid-institutes:grid.168010.e
118 schema:familyName PEARSON
119 schema:givenName HOLLY L.
120 rdf:type schema:Person
121 N71f348705c4048dfb4d408de5a9b58c4 rdf:first sg:person.01360372627.75
122 rdf:rest Ndd92fa005a9d43f1acce0043d549de2a
123 N7bcb101b614f4c46a4fae3d2ce3d9ff6 schema:name dimensions_id
124 schema:value pub.1017297089
125 rdf:type schema:PropertyValue
126 N8b4ebce8c35e47088e7f4f5522f85920 schema:issueNumber 2
127 rdf:type schema:PublicationIssue
128 Na2b11daad3414502a059ac3932b8335d schema:volumeNumber 37
129 rdf:type schema:PublicationVolume
130 Nae7c4044fd024b26bfe442a3eed46a3e schema:name doi
131 schema:value 10.1023/a:1005747123463
132 rdf:type schema:PropertyValue
133 Nba0ed6aad0f14841ab7e0afd0c84dc23 rdf:first N6eb25ba4755f4de4994e5714e037bb52
134 rdf:rest N67a728a8a46b41e7b769ffbedd9262e8
135 Nd58fb0c593c64e1fac304e6cbb5323eb schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 Ndd92fa005a9d43f1acce0043d549de2a rdf:first sg:person.016313514243.37
138 rdf:rest Nba0ed6aad0f14841ab7e0afd0c84dc23
139 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
140 schema:name Chemical Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
143 schema:name Other Chemical Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
146 schema:name Environmental Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
149 schema:name Soil Sciences
150 rdf:type schema:DefinedTerm
151 sg:journal.1124434 schema:issn 0168-2563
152 1573-515X
153 schema:name Biogeochemistry
154 schema:publisher Springer Nature
155 rdf:type schema:Periodical
156 sg:person.013453013723.17 schema:affiliation grid-institutes:grid.47840.3f
157 schema:familyName CHAPIN
158 schema:givenName F. STUART
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013453013723.17
160 rdf:type schema:Person
161 sg:person.01360372627.75 schema:affiliation grid-institutes:grid.47840.3f
162 schema:familyName HUNGATE
163 schema:givenName BRUCE A.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360372627.75
165 rdf:type schema:Person
166 sg:person.016313514243.37 schema:affiliation grid-institutes:grid.168010.e
167 schema:familyName LUND
168 schema:givenName CHRISTOPHER P.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016313514243.37
170 rdf:type schema:Person
171 sg:pub.10.1007/bf00033948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027302254
172 https://doi.org/10.1007/bf00033948
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/bf00260513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014117028
175 https://doi.org/10.1007/bf00260513
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/bf00379101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035082433
178 https://doi.org/10.1007/bf00379101
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/344529a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049611018
181 https://doi.org/10.1038/344529a0
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/370047a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026623245
184 https://doi.org/10.1038/370047a0
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.168010.e schema:alternateName Department of Biological Sciences, Stanford University, 94305, Stanford, CA
187 schema:name Department of Biological Sciences, Stanford University, 94305, Stanford, CA
188 Department of Plant Biology, Carnegie Institution of Washington, 94305, Stanford, CA
189 rdf:type schema:Organization
190 grid-institutes:grid.47840.3f schema:alternateName Department of Integrative Biology, University of California, 94720, Berkeley, CA
191 schema:name Department of Integrative Biology, University of California, 94720, Berkeley, CA
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...