Probabilities Of Causation: Three Counterfactual Interpretations And Their Identification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-11

AUTHORS

Judea Pearl

ABSTRACT

According to common judicial standard, judgment in favor ofplaintiff should be made if and only if it is “more probable than not” thatthe defendant's action was the cause for the plaintiff's damage (or death). This paper provides formal semantics, based on structural models ofcounterfactuals, for the probability that event x was a necessary orsufficient cause (or both) of another event y. The paper then explicates conditions under which the probability of necessary (or sufficient)causation can be learned from statistical data, and shows how data fromboth experimental and nonexperimental studies can be combined to yieldinformation that neither study alone can provide. Finally, we show thatnecessity and sufficiency are two independent aspects of causation, andthat both should be invoked in the construction of causal explanations for specific scenarios. More... »

PAGES

93-149

References to SciGraph publications

Journal

TITLE

Synthese

ISSUE

1-2

VOLUME

121

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1005233831499

DOI

http://dx.doi.org/10.1023/a:1005233831499

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046810206


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Cognitive Systems Laboratory Computer Science Department, University of California, Los Angeles, 90024, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pearl", 
        "givenName": "Judea", 
        "id": "sg:person.01360103132.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360103132.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00949659308811517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003521639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-332-5.50011-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003619399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0270-0255(86)90088-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012230731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009602825894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012806020", 
          "https://doi.org/10.1023/a:1009602825894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/70.1.41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014390860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0037350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015529465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-7421(08)60566-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018692624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.104.2.367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019132446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-0487-8_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025796661", 
          "https://doi.org/10.1007/978-94-017-0487-8_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-332-5.50062-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027865386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9681(87)80018-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029292124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045606236", 
          "https://doi.org/10.1007/bf02294763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045606236", 
          "https://doi.org/10.1007/bf02294763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm195812182592505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046157181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(97)00047-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049294953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1996.10476902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/288105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058598148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/82.4.669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bjps/xi.44.305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059433357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1907731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069637087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1909242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069638419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1911990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069639895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2025175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069704060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2184864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069813966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2215339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069831365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2531765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a115107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079450121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a115073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079530166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177012031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085485139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105538404"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-11", 
    "datePublishedReg": "1999-11-01", 
    "description": "According to common judicial standard, judgment in favor ofplaintiff should be made if and only if it is \u201cmore probable than not\u201d thatthe defendant's action was the cause for the plaintiff's damage (or death). This paper provides formal semantics, based on structural models ofcounterfactuals, for the probability that event x was a necessary orsufficient cause (or both) of another event y. The paper then explicates conditions under which the probability of necessary (or sufficient)causation can be learned from statistical data, and shows how data fromboth experimental and nonexperimental studies can be combined to yieldinformation that neither study alone can provide. Finally, we show thatnecessity and sufficiency are two independent aspects of causation, andthat both should be invoked in the construction of causal explanations for specific scenarios.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1005233831499", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1284232", 
        "issn": [
          "0039-7857", 
          "1573-0964"
        ], 
        "name": "Synthese", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "121"
      }
    ], 
    "name": "Probabilities Of Causation: Three Counterfactual Interpretations And Their Identification", 
    "pagination": "93-149", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "defc4ea7b0dd298c2dc36470f0e5d6184116f982b52b251f087a14dce704cdac"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1005233831499"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046810206"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1005233831499", 
      "https://app.dimensions.ai/details/publication/pub.1046810206"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1005233831499"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1005233831499'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1005233831499'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1005233831499'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1005233831499'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1005233831499 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N5dc3c25cc7ba4c12a78662fc413d0eb2
4 schema:citation sg:pub.10.1007/978-94-017-0487-8_18
5 sg:pub.10.1007/bf02294763
6 sg:pub.10.1023/a:1009602825894
7 https://doi.org/10.1016/0270-0255(86)90088-6
8 https://doi.org/10.1016/b978-1-55860-332-5.50011-0
9 https://doi.org/10.1016/b978-1-55860-332-5.50062-6
10 https://doi.org/10.1016/s0004-3702(97)00047-7
11 https://doi.org/10.1016/s0021-9681(87)80018-8
12 https://doi.org/10.1016/s0079-7421(08)60566-6
13 https://doi.org/10.1037/0033-295x.104.2.367
14 https://doi.org/10.1037/h0037350
15 https://doi.org/10.1056/nejm195812182592505
16 https://doi.org/10.1080/00949659308811517
17 https://doi.org/10.1080/01621459.1996.10476902
18 https://doi.org/10.1086/288105
19 https://doi.org/10.1093/biomet/70.1.41
20 https://doi.org/10.1093/biomet/82.4.669
21 https://doi.org/10.1093/bjps/xi.44.305
22 https://doi.org/10.1093/oxfordjournals.aje.a115073
23 https://doi.org/10.1093/oxfordjournals.aje.a115107
24 https://doi.org/10.1214/ss/1177012031
25 https://doi.org/10.1613/jair.202
26 https://doi.org/10.2307/1907731
27 https://doi.org/10.2307/1909242
28 https://doi.org/10.2307/1911990
29 https://doi.org/10.2307/2025175
30 https://doi.org/10.2307/2184864
31 https://doi.org/10.2307/2215339
32 https://doi.org/10.2307/2531765
33 schema:datePublished 1999-11
34 schema:datePublishedReg 1999-11-01
35 schema:description According to common judicial standard, judgment in favor ofplaintiff should be made if and only if it is “more probable than not” thatthe defendant's action was the cause for the plaintiff's damage (or death). This paper provides formal semantics, based on structural models ofcounterfactuals, for the probability that event x was a necessary orsufficient cause (or both) of another event y. The paper then explicates conditions under which the probability of necessary (or sufficient)causation can be learned from statistical data, and shows how data fromboth experimental and nonexperimental studies can be combined to yieldinformation that neither study alone can provide. Finally, we show thatnecessity and sufficiency are two independent aspects of causation, andthat both should be invoked in the construction of causal explanations for specific scenarios.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf Nde7bf0896e5b47fe93da9283132210c0
40 Nf032b175dca043b1a1b25613bdb52bb8
41 sg:journal.1284232
42 schema:name Probabilities Of Causation: Three Counterfactual Interpretations And Their Identification
43 schema:pagination 93-149
44 schema:productId N222d9a3616ff4c1ab1631f81ec7c0218
45 N4de03acc648f4218bb53ef62867ac027
46 Nccd4123c083541ce8c4816346fe8d5f0
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046810206
48 https://doi.org/10.1023/a:1005233831499
49 schema:sdDatePublished 2019-04-11T00:13
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nd13a9779b4fc4bd296e607ce60c2b992
52 schema:url http://link.springer.com/10.1023/A:1005233831499
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N222d9a3616ff4c1ab1631f81ec7c0218 schema:name doi
57 schema:value 10.1023/a:1005233831499
58 rdf:type schema:PropertyValue
59 N4de03acc648f4218bb53ef62867ac027 schema:name dimensions_id
60 schema:value pub.1046810206
61 rdf:type schema:PropertyValue
62 N5dc3c25cc7ba4c12a78662fc413d0eb2 rdf:first sg:person.01360103132.74
63 rdf:rest rdf:nil
64 Nccd4123c083541ce8c4816346fe8d5f0 schema:name readcube_id
65 schema:value defc4ea7b0dd298c2dc36470f0e5d6184116f982b52b251f087a14dce704cdac
66 rdf:type schema:PropertyValue
67 Nd13a9779b4fc4bd296e607ce60c2b992 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nde7bf0896e5b47fe93da9283132210c0 schema:issueNumber 1-2
70 rdf:type schema:PublicationIssue
71 Nf032b175dca043b1a1b25613bdb52bb8 schema:volumeNumber 121
72 rdf:type schema:PublicationVolume
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
77 schema:name Statistics
78 rdf:type schema:DefinedTerm
79 sg:journal.1284232 schema:issn 0039-7857
80 1573-0964
81 schema:name Synthese
82 rdf:type schema:Periodical
83 sg:person.01360103132.74 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
84 schema:familyName Pearl
85 schema:givenName Judea
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360103132.74
87 rdf:type schema:Person
88 sg:pub.10.1007/978-94-017-0487-8_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025796661
89 https://doi.org/10.1007/978-94-017-0487-8_18
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf02294763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045606236
92 https://doi.org/10.1007/bf02294763
93 rdf:type schema:CreativeWork
94 sg:pub.10.1023/a:1009602825894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012806020
95 https://doi.org/10.1023/a:1009602825894
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0270-0255(86)90088-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012230731
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/b978-1-55860-332-5.50011-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003619399
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/b978-1-55860-332-5.50062-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027865386
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0004-3702(97)00047-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049294953
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0021-9681(87)80018-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029292124
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0079-7421(08)60566-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018692624
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1037/0033-295x.104.2.367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019132446
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1037/h0037350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015529465
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1056/nejm195812182592505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046157181
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1080/00949659308811517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003521639
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1080/01621459.1996.10476902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305036
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1086/288105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058598148
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1093/biomet/70.1.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014390860
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1093/biomet/82.4.669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420600
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1093/bjps/xi.44.305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059433357
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1093/oxfordjournals.aje.a115073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079530166
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1093/oxfordjournals.aje.a115107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079450121
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1214/ss/1177012031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085485139
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1613/jair.202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105538404
134 rdf:type schema:CreativeWork
135 https://doi.org/10.2307/1907731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069637087
136 rdf:type schema:CreativeWork
137 https://doi.org/10.2307/1909242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069638419
138 rdf:type schema:CreativeWork
139 https://doi.org/10.2307/1911990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069639895
140 rdf:type schema:CreativeWork
141 https://doi.org/10.2307/2025175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069704060
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2307/2184864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069813966
144 rdf:type schema:CreativeWork
145 https://doi.org/10.2307/2215339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069831365
146 rdf:type schema:CreativeWork
147 https://doi.org/10.2307/2531765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977196
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
150 schema:name Cognitive Systems Laboratory Computer Science Department, University of California, Los Angeles, 90024, Los Angeles, CA, USA
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...