Moduli Spaces of Curves with Quasi-Symmetric Weierstrass GAp Seqnences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-08

AUTHORS

Gilvan Oliveira, Karl-Otto Stöhr

ABSTRACT

In this paper we give an explicit construction of the moduli space of the pointed complete Gorenstein curves of arithmetic genus g with a given quasi-symmetric Weierstrass semigroup, that is, a Weierstrass semigroup whose last gap is equal to 2g − 2. We identify such a curve with its image under the canonical embedding in the (g − 1)-dimensional projective space. By normalizing the coefficients of the quadratic relations and by constructing Gröbner bases of the canonical ideal, we obtain the equations of the moduli space in terms of Buchberger's criterion. Moreover, by analyzing syzygies of the canonical ideal we establish criteria that make the computations less expensive. More... »

PAGES

65-82

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1004943511841

DOI

http://dx.doi.org/10.1023/a:1004943511841

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036254342


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Departamento de Matem\u00e1tica-CCE-UFES, Campus Universit\u00e1rio de Gioabeiras, 29.060-900, Vit\u00f3ria \u2013 Es, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oliveira", 
        "givenName": "Gilvan", 
        "id": "sg:person.010356061045.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010356061045.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Nacional de Matem\u00e1tica Pura e Aplicada", 
          "id": "https://www.grid.ac/institutes/grid.429011.f", 
          "name": [
            "Instituto de Matem\u00e1tica Pura e Aplicada, Estrada Dona Castorina 110, 22460-320, Rio de jANEIRO \u2013 rj, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "St\u00f6hr", 
        "givenName": "Karl-Otto", 
        "id": "sg:person.011015136144.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011015136144.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01579181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000436982", 
          "https://doi.org/10.1007/bf01579181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004995513658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008053404", 
          "https://doi.org/10.1023/a:1004995513658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02568416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033855374", 
          "https://doi.org/10.1007/bf02568416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1991.421.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040659217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01456986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047508555", 
          "https://doi.org/10.1007/bf01456986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01456986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047508555", 
          "https://doi.org/10.1007/bf01456986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1993.441.189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048901438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01259331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048987298", 
          "https://doi.org/10.1007/bf01259331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01259331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048987298", 
          "https://doi.org/10.1007/bf01259331"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-08", 
    "datePublishedReg": "1997-08-01", 
    "description": "In this paper we give an explicit construction of the moduli space of the pointed complete Gorenstein curves of arithmetic genus g with a given quasi-symmetric Weierstrass semigroup, that is, a Weierstrass semigroup whose last gap is equal to 2g \u2212 2. We identify such a curve with its image under the canonical embedding in the (g \u2212 1)-dimensional projective space. By normalizing the coefficients of the quadratic relations and by constructing Gr\u00f6bner bases of the canonical ideal, we obtain the equations of the moduli space in terms of Buchberger's criterion. Moreover, by analyzing syzygies of the canonical ideal we establish criteria that make the computations less expensive.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1004943511841", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135919", 
        "issn": [
          "0046-5755", 
          "1572-9168"
        ], 
        "name": "Geometriae Dedicata", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "Moduli Spaces of Curves with Quasi-Symmetric Weierstrass GAp Seqnences", 
    "pagination": "65-82", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "acb3238139a349af18a3712101529bd31ac0739c6b84b59e7d58df96a39d5a53"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1004943511841"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036254342"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1004943511841", 
      "https://app.dimensions.ai/details/publication/pub.1036254342"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1004943511841"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1004943511841'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1004943511841'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1004943511841'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1004943511841'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1004943511841 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nada1c5fb48bc4eea9bf144c8aca193fd
4 schema:citation sg:pub.10.1007/bf01259331
5 sg:pub.10.1007/bf01456986
6 sg:pub.10.1007/bf01579181
7 sg:pub.10.1007/bf02568416
8 sg:pub.10.1023/a:1004995513658
9 https://doi.org/10.1515/crll.1991.421.83
10 https://doi.org/10.1515/crll.1993.441.189
11 schema:datePublished 1997-08
12 schema:datePublishedReg 1997-08-01
13 schema:description In this paper we give an explicit construction of the moduli space of the pointed complete Gorenstein curves of arithmetic genus g with a given quasi-symmetric Weierstrass semigroup, that is, a Weierstrass semigroup whose last gap is equal to 2g − 2. We identify such a curve with its image under the canonical embedding in the (g − 1)-dimensional projective space. By normalizing the coefficients of the quadratic relations and by constructing Gröbner bases of the canonical ideal, we obtain the equations of the moduli space in terms of Buchberger's criterion. Moreover, by analyzing syzygies of the canonical ideal we establish criteria that make the computations less expensive.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N0a9ae96025374a96a32a2918e4be6fe4
18 N3205129b641f47288452e5926ce2c0cc
19 sg:journal.1135919
20 schema:name Moduli Spaces of Curves with Quasi-Symmetric Weierstrass GAp Seqnences
21 schema:pagination 65-82
22 schema:productId N39c078e079ac4f30855efe297844e673
23 N9ff2f51fd3484180996986179b646b2d
24 Nac10bf666b7842d086fab7fd529cbc58
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036254342
26 https://doi.org/10.1023/a:1004943511841
27 schema:sdDatePublished 2019-04-10T13:12
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N069a4bbb9a594cf795d8ee24181fc018
30 schema:url http://link.springer.com/10.1023/A:1004943511841
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N069a4bbb9a594cf795d8ee24181fc018 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N0a9ae96025374a96a32a2918e4be6fe4 schema:volumeNumber 67
37 rdf:type schema:PublicationVolume
38 N3205129b641f47288452e5926ce2c0cc schema:issueNumber 1
39 rdf:type schema:PublicationIssue
40 N39c078e079ac4f30855efe297844e673 schema:name readcube_id
41 schema:value acb3238139a349af18a3712101529bd31ac0739c6b84b59e7d58df96a39d5a53
42 rdf:type schema:PropertyValue
43 N560d20023fde4d1d9e2ee253861aac9a rdf:first sg:person.011015136144.05
44 rdf:rest rdf:nil
45 N65b89b806a594fe995a9c7f99821962e schema:name Departamento de Matemática-CCE-UFES, Campus Universitário de Gioabeiras, 29.060-900, Vitória – Es, Brazil
46 rdf:type schema:Organization
47 N9ff2f51fd3484180996986179b646b2d schema:name dimensions_id
48 schema:value pub.1036254342
49 rdf:type schema:PropertyValue
50 Nac10bf666b7842d086fab7fd529cbc58 schema:name doi
51 schema:value 10.1023/a:1004943511841
52 rdf:type schema:PropertyValue
53 Nada1c5fb48bc4eea9bf144c8aca193fd rdf:first sg:person.010356061045.81
54 rdf:rest N560d20023fde4d1d9e2ee253861aac9a
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1135919 schema:issn 0046-5755
62 1572-9168
63 schema:name Geometriae Dedicata
64 rdf:type schema:Periodical
65 sg:person.010356061045.81 schema:affiliation N65b89b806a594fe995a9c7f99821962e
66 schema:familyName Oliveira
67 schema:givenName Gilvan
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010356061045.81
69 rdf:type schema:Person
70 sg:person.011015136144.05 schema:affiliation https://www.grid.ac/institutes/grid.429011.f
71 schema:familyName Stöhr
72 schema:givenName Karl-Otto
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011015136144.05
74 rdf:type schema:Person
75 sg:pub.10.1007/bf01259331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048987298
76 https://doi.org/10.1007/bf01259331
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01456986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047508555
79 https://doi.org/10.1007/bf01456986
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01579181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000436982
82 https://doi.org/10.1007/bf01579181
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf02568416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033855374
85 https://doi.org/10.1007/bf02568416
86 rdf:type schema:CreativeWork
87 sg:pub.10.1023/a:1004995513658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008053404
88 https://doi.org/10.1023/a:1004995513658
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1515/crll.1991.421.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040659217
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1515/crll.1993.441.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048901438
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.429011.f schema:alternateName Instituto Nacional de Matemática Pura e Aplicada
95 schema:name Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22460-320, Rio de jANEIRO – rj, Brazil
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...