Phylogenetic Analysis of Dichloromethane-Utilizing Aerobic Methylotrophic Bacteria View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-01

AUTHORS

T. P. Tourova, B. B. Kuznetsov, N. V. Doronina, Yu. A. Trotsenko

ABSTRACT

The phylogenetic relationships of 12 aerobic dichloromethane-degrading bacteria that implement different C1-assimilation pathways was determined based on 16S ribosomal RNA sequences and DNA–DNA hybridization data. The restricted facultative methylotroph “Methylophilus leisingerii” DM11 with the ribulose monophosphate pathway was found to belong to the genus Methylophilus cluster of the beta subclass of Proteobacteria. The facultative methylotroph Methylorhabdus multivorans DM13 was assigned to a separate branch of the alpha-2 group of Proteobacteria. Paracoccus methylutens DM12, which utilizes C1-compounds via the Calvin cycle, was found to belong to the alpha-3 group of Proteobacteria (more precisely, to the genus Paracoccus cluster). Thus, phylogenetic analysis confirmed the taxonomic status of these recently characterized bacteria. According to the degree of DNA homology, several novel strains of methylotrophic bacteria were divided into three genotypic groups within the alpha-2 group of the Proteobacteria. Genotypic group 1, comprising strains DM1, DM3, and DM5 through DM9, and genotypic group 3, comprising strain DM10, were phylogenetically close to the methylotrophic bacteria of the genus Methylopila, whereas genotypic group 2 (strain DM4) was close to bacteria of the genus Methylobacterium. The genotypic groups obviously represent distinct taxa of methylotrophic bacteria, whose status should be confirmed by phenotypic analysis. More... »

PAGES

79-83

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1004801106488

DOI

http://dx.doi.org/10.1023/a:1004801106488

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033878681


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Microbiology, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7, k. 2, 117811, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tourova", 
        "givenName": "T. P.", 
        "id": "sg:person.01040404010.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040404010.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioengineering Center", 
          "id": "https://www.grid.ac/institutes/grid.482762.d", 
          "name": [
            "Bioengineering Center, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7, k. 1, 117811, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsov", 
        "givenName": "B. B.", 
        "id": "sg:person.01151135415.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151135415.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, 142290, Pushchino, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doronina", 
        "givenName": "N. V.", 
        "id": "sg:person.01131254124.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131254124.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, 142290, Pushchino, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trotsenko", 
        "givenName": "Yu. A.", 
        "id": "sg:person.0575513402.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575513402.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0723-2020(98)80027-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001660236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.1.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002735020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4832-3211-9.50009-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016180325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0361-3658(85)90028-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019024591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0361-3658(85)90028-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019024591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0723-2020(11)80454-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023954664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-44-4-846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028445531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00414602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041838086", 
          "https://doi.org/10.1007/bf00414602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(61)80047-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052252272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/10.5.569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-37-4-463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060348219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-48-4-1313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060349845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-132-10-2837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060365946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-134-4-943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060366920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077155612", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078837863", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078880927", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2175/106143097x125489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100989721"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-01", 
    "datePublishedReg": "2001-01-01", 
    "description": "The phylogenetic relationships of 12 aerobic dichloromethane-degrading bacteria that implement different C1-assimilation pathways was determined based on 16S ribosomal RNA sequences and DNA\u2013DNA hybridization data. The restricted facultative methylotroph \u201cMethylophilus leisingerii\u201d DM11 with the ribulose monophosphate pathway was found to belong to the genus Methylophilus cluster of the beta subclass of Proteobacteria. The facultative methylotroph Methylorhabdus multivorans DM13 was assigned to a separate branch of the alpha-2 group of Proteobacteria. Paracoccus methylutens DM12, which utilizes C1-compounds via the Calvin cycle, was found to belong to the alpha-3 group of Proteobacteria (more precisely, to the genus Paracoccus cluster). Thus, phylogenetic analysis confirmed the taxonomic status of these recently characterized bacteria. According to the degree of DNA homology, several novel strains of methylotrophic bacteria were divided into three genotypic groups within the alpha-2 group of the Proteobacteria. Genotypic group 1, comprising strains DM1, DM3, and DM5 through DM9, and genotypic group 3, comprising strain DM10, were phylogenetically close to the methylotrophic bacteria of the genus Methylopila, whereas genotypic group 2 (strain DM4) was close to bacteria of the genus Methylobacterium. The genotypic groups obviously represent distinct taxa of methylotrophic bacteria, whose status should be confirmed by phenotypic analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1004801106488", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327383", 
        "issn": [
          "0026-3656", 
          "0026-2617"
        ], 
        "name": "Microbiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "name": "Phylogenetic Analysis of Dichloromethane-Utilizing Aerobic Methylotrophic Bacteria", 
    "pagination": "79-83", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a163b2951f323bdebc5691efe4a192d28df43d1310b4b8fe65dde36924dc55f2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1004801106488"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033878681"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1004801106488", 
      "https://app.dimensions.ai/details/publication/pub.1033878681"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1004801106488"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1004801106488'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1004801106488'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1004801106488'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1004801106488'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1004801106488 schema:about anzsrc-for:06
2 anzsrc-for:0605
3 schema:author N7de2b040e8f043e48fc5a39654b8f36d
4 schema:citation sg:pub.10.1007/bf00414602
5 https://app.dimensions.ai/details/publication/pub.1077155612
6 https://app.dimensions.ai/details/publication/pub.1078837863
7 https://app.dimensions.ai/details/publication/pub.1078880927
8 https://doi.org/10.1016/0361-3658(85)90028-1
9 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7
10 https://doi.org/10.1016/s0022-2836(61)80047-8
11 https://doi.org/10.1016/s0723-2020(11)80454-6
12 https://doi.org/10.1016/s0723-2020(98)80027-1
13 https://doi.org/10.1093/bioinformatics/10.5.569
14 https://doi.org/10.1093/nar/27.1.171
15 https://doi.org/10.1099/00207713-37-4-463
16 https://doi.org/10.1099/00207713-44-4-846
17 https://doi.org/10.1099/00207713-48-4-1313
18 https://doi.org/10.1099/00221287-132-10-2837
19 https://doi.org/10.1099/00221287-134-4-943
20 https://doi.org/10.2175/106143097x125489
21 schema:datePublished 2001-01
22 schema:datePublishedReg 2001-01-01
23 schema:description The phylogenetic relationships of 12 aerobic dichloromethane-degrading bacteria that implement different C1-assimilation pathways was determined based on 16S ribosomal RNA sequences and DNA–DNA hybridization data. The restricted facultative methylotroph “Methylophilus leisingerii” DM11 with the ribulose monophosphate pathway was found to belong to the genus Methylophilus cluster of the beta subclass of Proteobacteria. The facultative methylotroph Methylorhabdus multivorans DM13 was assigned to a separate branch of the alpha-2 group of Proteobacteria. Paracoccus methylutens DM12, which utilizes C1-compounds via the Calvin cycle, was found to belong to the alpha-3 group of Proteobacteria (more precisely, to the genus Paracoccus cluster). Thus, phylogenetic analysis confirmed the taxonomic status of these recently characterized bacteria. According to the degree of DNA homology, several novel strains of methylotrophic bacteria were divided into three genotypic groups within the alpha-2 group of the Proteobacteria. Genotypic group 1, comprising strains DM1, DM3, and DM5 through DM9, and genotypic group 3, comprising strain DM10, were phylogenetically close to the methylotrophic bacteria of the genus Methylopila, whereas genotypic group 2 (strain DM4) was close to bacteria of the genus Methylobacterium. The genotypic groups obviously represent distinct taxa of methylotrophic bacteria, whose status should be confirmed by phenotypic analysis.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf Nf3f94ce590bd451da926d3b8126d693a
28 Nf5a668d490b04efeb8fe7ae746e437e5
29 sg:journal.1327383
30 schema:name Phylogenetic Analysis of Dichloromethane-Utilizing Aerobic Methylotrophic Bacteria
31 schema:pagination 79-83
32 schema:productId N90e4b37232aa4ac68fd0dd7e135be33f
33 Nb8fde9ff20cc4c06af06e557287d5cba
34 Nd03f2b8786384343a501f4edd91ef9ad
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033878681
36 https://doi.org/10.1023/a:1004801106488
37 schema:sdDatePublished 2019-04-10T18:18
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Ne1e32b46e51e48faabff4c70679e4e28
40 schema:url http://link.springer.com/10.1023/A:1004801106488
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N0396f9ee94734e62b6b7a398524e5798 rdf:first sg:person.01131254124.10
45 rdf:rest N754da7b05eee47c28145e1a315fd89e6
46 N754da7b05eee47c28145e1a315fd89e6 rdf:first sg:person.0575513402.68
47 rdf:rest rdf:nil
48 N7de2b040e8f043e48fc5a39654b8f36d rdf:first sg:person.01040404010.51
49 rdf:rest Nda9738cc27b04986b732895bbe237327
50 N90e4b37232aa4ac68fd0dd7e135be33f schema:name dimensions_id
51 schema:value pub.1033878681
52 rdf:type schema:PropertyValue
53 Nb8fde9ff20cc4c06af06e557287d5cba schema:name doi
54 schema:value 10.1023/a:1004801106488
55 rdf:type schema:PropertyValue
56 Nd03f2b8786384343a501f4edd91ef9ad schema:name readcube_id
57 schema:value a163b2951f323bdebc5691efe4a192d28df43d1310b4b8fe65dde36924dc55f2
58 rdf:type schema:PropertyValue
59 Nda9738cc27b04986b732895bbe237327 rdf:first sg:person.01151135415.38
60 rdf:rest N0396f9ee94734e62b6b7a398524e5798
61 Ne1e32b46e51e48faabff4c70679e4e28 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nf3f94ce590bd451da926d3b8126d693a schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 Nf5a668d490b04efeb8fe7ae746e437e5 schema:volumeNumber 70
66 rdf:type schema:PublicationVolume
67 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
68 schema:name Biological Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
71 schema:name Microbiology
72 rdf:type schema:DefinedTerm
73 sg:journal.1327383 schema:issn 0026-2617
74 0026-3656
75 schema:name Microbiology
76 rdf:type schema:Periodical
77 sg:person.01040404010.51 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
78 schema:familyName Tourova
79 schema:givenName T. P.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040404010.51
81 rdf:type schema:Person
82 sg:person.01131254124.10 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
83 schema:familyName Doronina
84 schema:givenName N. V.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131254124.10
86 rdf:type schema:Person
87 sg:person.01151135415.38 schema:affiliation https://www.grid.ac/institutes/grid.482762.d
88 schema:familyName Kuznetsov
89 schema:givenName B. B.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151135415.38
91 rdf:type schema:Person
92 sg:person.0575513402.68 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
93 schema:familyName Trotsenko
94 schema:givenName Yu. A.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575513402.68
96 rdf:type schema:Person
97 sg:pub.10.1007/bf00414602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041838086
98 https://doi.org/10.1007/bf00414602
99 rdf:type schema:CreativeWork
100 https://app.dimensions.ai/details/publication/pub.1077155612 schema:CreativeWork
101 https://app.dimensions.ai/details/publication/pub.1078837863 schema:CreativeWork
102 https://app.dimensions.ai/details/publication/pub.1078880927 schema:CreativeWork
103 https://doi.org/10.1016/0361-3658(85)90028-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019024591
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016180325
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0022-2836(61)80047-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052252272
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0723-2020(11)80454-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023954664
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0723-2020(98)80027-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001660236
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1093/bioinformatics/10.5.569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413429
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1093/nar/27.1.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002735020
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1099/00207713-37-4-463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060348219
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1099/00207713-44-4-846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028445531
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1099/00207713-48-4-1313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060349845
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1099/00221287-132-10-2837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060365946
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1099/00221287-134-4-943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060366920
126 rdf:type schema:CreativeWork
127 https://doi.org/10.2175/106143097x125489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100989721
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.482762.d schema:alternateName Bioengineering Center
130 schema:name Bioengineering Center, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7, k. 1, 117811, Moscow, Russia
131 rdf:type schema:Organization
132 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
133 schema:name Institute of Microbiology, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7, k. 2, 117811, Moscow, Russia
134 Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, 142290, Pushchino, Moscow oblast, Russia
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...