The impact behavior of aluminum alloy 6061: Effects of notch severity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-06

AUTHORS

T. S. Srivatsan, J. Champlin, P. C. Lam, M. Manoharan

ABSTRACT

In this paper the influence of notch acuity and test temperature on the impact behavior of aluminum alloy 6061 is presented and discussed. Notch angles of 45°, 60°, 75° and 90° were chosen for a standard charpy impact test specimen containing two such notches positioned at right angles to the applied load. For a given angle of the notch the dynamic fracture toughness increased with an increase in test temperature. At a given test temperature, the impact toughness of a ductile microstructure decreased with an increase in notch severity. For the least severe notch dynamic fracture surfaces revealed the occurrence of localized mixed-mode deformation at the elevated temperature. An increase in notch severity resulted in essentially Mode-I dominated fracture at all test temperatures. The results are discussed in light of alloy microstructure, fracture mechanisms and deformation field ahead of the advancing crack tip. More... »

PAGES

2793-2800

References to SciGraph publications

  • 1983-06. Estimation of transverse-shear fracture toughness for an hsla steel in INTERNATIONAL JOURNAL OF FRACTURE
  • 1996-01. Combined mode I-mode II fracture toughness of high density polyethylene in JOURNAL OF MATERIALS SCIENCE LETTERS
  • 1984-05. Experimental study of fracture under combined modes KI – KIII in INTERNATIONAL JOURNAL OF FRACTURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1004614814112

    DOI

    http://dx.doi.org/10.1023/a:1004614814112

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014189775


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA", 
              "id": "http://www.grid.ac/institutes/grid.265881.0", 
              "name": [
                "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Srivatsan", 
            "givenName": "T. S.", 
            "id": "sg:person.015440524245.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA", 
              "id": "http://www.grid.ac/institutes/grid.265881.0", 
              "name": [
                "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Champlin", 
            "givenName": "J.", 
            "id": "sg:person.014416426167.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014416426167.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA", 
              "id": "http://www.grid.ac/institutes/grid.265881.0", 
              "name": [
                "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lam", 
            "givenName": "P. C.", 
            "id": "sg:person.01314654464.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314654464.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Materials Engineering, School of Applied Sciences, Nanyang Technological University, Nanyang Avenue, 639798, Singapore", 
              "id": "http://www.grid.ac/institutes/grid.59025.3b", 
              "name": [
                "Division of Materials Engineering, School of Applied Sciences, Nanyang Technological University, Nanyang Avenue, 639798, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Manoharan", 
            "givenName": "M.", 
            "id": "sg:person.010103676367.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010103676367.58"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01152756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023501138", 
              "https://doi.org/10.1007/bf01152756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00274466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037747022", 
              "https://doi.org/10.1007/bf00274466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00942728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008370956", 
              "https://doi.org/10.1007/bf00942728"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-06", 
        "datePublishedReg": "1999-06-01", 
        "description": "In this paper the influence of notch acuity and test temperature on the impact behavior of aluminum alloy 6061 is presented and discussed. Notch angles of 45\u00b0, 60\u00b0, 75\u00b0 and 90\u00b0 were chosen for a standard charpy impact test specimen containing two such notches positioned at right angles to the applied load. For a given angle of the notch the dynamic fracture toughness increased with an increase in test temperature. At a given test temperature, the impact toughness of a ductile microstructure decreased with an increase in notch severity. For the least severe notch dynamic fracture surfaces revealed the occurrence of localized mixed-mode deformation at the elevated temperature. An increase in notch severity resulted in essentially Mode-I dominated fracture at all test temperatures. The results are discussed in light of alloy microstructure, fracture mechanisms and deformation field ahead of the advancing crack tip.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1004614814112", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1312116", 
            "issn": [
              "0022-2461", 
              "1573-4811"
            ], 
            "name": "Journal of Materials Science", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "34"
          }
        ], 
        "keywords": [
          "aluminum alloy 6061", 
          "notch severity", 
          "test temperature", 
          "alloy 6061", 
          "impact behavior", 
          "standard charpy impact test specimen", 
          "dynamic fracture surface", 
          "dynamic fracture toughness", 
          "mixed-mode deformation", 
          "impact test specimen", 
          "impact toughness", 
          "ductile microstructure", 
          "fracture toughness", 
          "alloy microstructure", 
          "fracture mechanism", 
          "fracture surfaces", 
          "crack tip", 
          "notch acuity", 
          "test specimen", 
          "deformation field", 
          "elevated temperatures", 
          "notch angle", 
          "toughness", 
          "microstructure", 
          "such notches", 
          "temperature", 
          "angle", 
          "deformation", 
          "load", 
          "Notch", 
          "behavior", 
          "surface", 
          "right angles", 
          "specimen", 
          "tip", 
          "fractures", 
          "mode", 
          "field", 
          "increase", 
          "influence", 
          "results", 
          "effect", 
          "light", 
          "mechanism", 
          "occurrence", 
          "severity", 
          "paper", 
          "acuity", 
          "charpy impact test specimen", 
          "least severe notch dynamic fracture surfaces", 
          "severe notch dynamic fracture surfaces", 
          "notch dynamic fracture surfaces", 
          "localized mixed-mode deformation"
        ], 
        "name": "The impact behavior of aluminum alloy 6061: Effects of notch severity", 
        "pagination": "2793-2800", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014189775"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1004614814112"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1004614814112", 
          "https://app.dimensions.ai/details/publication/pub.1014189775"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_339.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1004614814112"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1004614814112'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1004614814112'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1004614814112'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1004614814112'


     

    This table displays all metadata directly associated to this object as RDF triples.

    147 TRIPLES      22 PREDICATES      82 URIs      71 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1004614814112 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N78e210eb1b304c7b873b0fd328172451
    4 schema:citation sg:pub.10.1007/bf00274466
    5 sg:pub.10.1007/bf00942728
    6 sg:pub.10.1007/bf01152756
    7 schema:datePublished 1999-06
    8 schema:datePublishedReg 1999-06-01
    9 schema:description In this paper the influence of notch acuity and test temperature on the impact behavior of aluminum alloy 6061 is presented and discussed. Notch angles of 45°, 60°, 75° and 90° were chosen for a standard charpy impact test specimen containing two such notches positioned at right angles to the applied load. For a given angle of the notch the dynamic fracture toughness increased with an increase in test temperature. At a given test temperature, the impact toughness of a ductile microstructure decreased with an increase in notch severity. For the least severe notch dynamic fracture surfaces revealed the occurrence of localized mixed-mode deformation at the elevated temperature. An increase in notch severity resulted in essentially Mode-I dominated fracture at all test temperatures. The results are discussed in light of alloy microstructure, fracture mechanisms and deformation field ahead of the advancing crack tip.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N073d08540f2a467aa2678efae72baf7d
    14 N637341179dce41629adeb25f2a5c83f7
    15 sg:journal.1312116
    16 schema:keywords Notch
    17 acuity
    18 alloy 6061
    19 alloy microstructure
    20 aluminum alloy 6061
    21 angle
    22 behavior
    23 charpy impact test specimen
    24 crack tip
    25 deformation
    26 deformation field
    27 ductile microstructure
    28 dynamic fracture surface
    29 dynamic fracture toughness
    30 effect
    31 elevated temperatures
    32 field
    33 fracture mechanism
    34 fracture surfaces
    35 fracture toughness
    36 fractures
    37 impact behavior
    38 impact test specimen
    39 impact toughness
    40 increase
    41 influence
    42 least severe notch dynamic fracture surfaces
    43 light
    44 load
    45 localized mixed-mode deformation
    46 mechanism
    47 microstructure
    48 mixed-mode deformation
    49 mode
    50 notch acuity
    51 notch angle
    52 notch dynamic fracture surfaces
    53 notch severity
    54 occurrence
    55 paper
    56 results
    57 right angles
    58 severe notch dynamic fracture surfaces
    59 severity
    60 specimen
    61 standard charpy impact test specimen
    62 such notches
    63 surface
    64 temperature
    65 test specimen
    66 test temperature
    67 tip
    68 toughness
    69 schema:name The impact behavior of aluminum alloy 6061: Effects of notch severity
    70 schema:pagination 2793-2800
    71 schema:productId Nb8926bf3585f42d494b4b999a2cb5aa6
    72 Nea50134ee0a74315a47fdfc1092bc99f
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014189775
    74 https://doi.org/10.1023/a:1004614814112
    75 schema:sdDatePublished 2022-01-01T18:11
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N59e08758fd9342d0b38584a9b1c799c0
    78 schema:url https://doi.org/10.1023/a:1004614814112
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N073d08540f2a467aa2678efae72baf7d schema:issueNumber 12
    83 rdf:type schema:PublicationIssue
    84 N1d3084d0da2d43e491f8b18bf7e5fe35 rdf:first sg:person.014416426167.41
    85 rdf:rest N6e2b55e9cd184bb48b9065115e122abd
    86 N59e08758fd9342d0b38584a9b1c799c0 schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 N637341179dce41629adeb25f2a5c83f7 schema:volumeNumber 34
    89 rdf:type schema:PublicationVolume
    90 N6e2b55e9cd184bb48b9065115e122abd rdf:first sg:person.01314654464.79
    91 rdf:rest N9b212a8b49384ddfb538b56c6b47399f
    92 N78e210eb1b304c7b873b0fd328172451 rdf:first sg:person.015440524245.80
    93 rdf:rest N1d3084d0da2d43e491f8b18bf7e5fe35
    94 N9b212a8b49384ddfb538b56c6b47399f rdf:first sg:person.010103676367.58
    95 rdf:rest rdf:nil
    96 Nb8926bf3585f42d494b4b999a2cb5aa6 schema:name doi
    97 schema:value 10.1023/a:1004614814112
    98 rdf:type schema:PropertyValue
    99 Nea50134ee0a74315a47fdfc1092bc99f schema:name dimensions_id
    100 schema:value pub.1014189775
    101 rdf:type schema:PropertyValue
    102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Engineering
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Materials Engineering
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1312116 schema:issn 0022-2461
    109 1573-4811
    110 schema:name Journal of Materials Science
    111 schema:publisher Springer Nature
    112 rdf:type schema:Periodical
    113 sg:person.010103676367.58 schema:affiliation grid-institutes:grid.59025.3b
    114 schema:familyName Manoharan
    115 schema:givenName M.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010103676367.58
    117 rdf:type schema:Person
    118 sg:person.01314654464.79 schema:affiliation grid-institutes:grid.265881.0
    119 schema:familyName Lam
    120 schema:givenName P. C.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314654464.79
    122 rdf:type schema:Person
    123 sg:person.014416426167.41 schema:affiliation grid-institutes:grid.265881.0
    124 schema:familyName Champlin
    125 schema:givenName J.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014416426167.41
    127 rdf:type schema:Person
    128 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
    129 schema:familyName Srivatsan
    130 schema:givenName T. S.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
    132 rdf:type schema:Person
    133 sg:pub.10.1007/bf00274466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037747022
    134 https://doi.org/10.1007/bf00274466
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf00942728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008370956
    137 https://doi.org/10.1007/bf00942728
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf01152756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023501138
    140 https://doi.org/10.1007/bf01152756
    141 rdf:type schema:CreativeWork
    142 grid-institutes:grid.265881.0 schema:alternateName Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA
    143 schema:name Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA
    144 rdf:type schema:Organization
    145 grid-institutes:grid.59025.3b schema:alternateName Division of Materials Engineering, School of Applied Sciences, Nanyang Technological University, Nanyang Avenue, 639798, Singapore
    146 schema:name Division of Materials Engineering, School of Applied Sciences, Nanyang Technological University, Nanyang Avenue, 639798, Singapore
    147 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...