Mean-Field Theory for Percolation Models of the Ising Type View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-01

AUTHORS

L. Chayes, A. Coniglio, J. Machta, K. Shtengel

ABSTRACT

The q=2 random cluster model is studied in the context of two mean-field models: the Bethe lattice and the complete graph. For these systems, the critical exponents that are defined in terms of finite clusters have some anomalous values as the critical point is approached from the high-density side, which vindicates the results of earlier studies. In particular, the exponent γ~′ which characterizes the divergence of the average size of finite clusters is 1/2, and ν~′, the exponent associated with the length scale of finite clusters, is 1/4. The full collection of exponents indicates an upper critical dimension of 6. The standard mean field exponents of the Ising system are also present in this model (ν′=1/2, γ′=1), which implies, in particular, the presence of two diverging length-scales. Furthermore, the finite cluster exponents are stable to the addition of disorder, which, near the upper critical dimension, may have interesting implications concerning the generality of the disordered system/correlation length bounds. More... »

PAGES

53-66

References to SciGraph publications

  • 1996-09. The random-cluster model on the complete graph in PROBABILITY THEORY AND RELATED FIELDS
  • 1986-03. A mean field spin glass with short-range interactions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1004555127906

    DOI

    http://dx.doi.org/10.1023/a:1004555127906

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024097349


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California Los Angeles", 
              "id": "https://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "University of California, 90095-1555, Los Angeles, California"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chayes", 
            "givenName": "L.", 
            "id": "sg:person.01361120400.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361120400.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Naples Federico II", 
              "id": "https://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Dipartimento di Scienze Fisiche, Universit\u00e0 \u201cFederico II\u201d, Mostra d'Oltremare Pad. 19, I-80125, Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Coniglio", 
            "givenName": "A.", 
            "id": "sg:person.01227217136.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Amherst", 
              "id": "https://www.grid.ac/institutes/grid.266683.f", 
              "name": [
                "Department of Physics and Astronomy, University of Massachusetts, 01003-3720, Amherst, Massachusetts"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Machta", 
            "givenName": "J.", 
            "id": "sg:person.0664335332.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664335332.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California Los Angeles", 
              "id": "https://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "Department of Physics, University of California, 90095-1547, Los Angeles, California"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shtengel", 
            "givenName": "K.", 
            "id": "sg:person.01117455247.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117455247.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0031-8914(72)90045-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019367094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-8914(72)90045-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019367094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01213683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045198786", 
              "https://doi.org/10.1007/bf01213683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01213683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045198786", 
              "https://doi.org/10.1007/bf01213683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01210926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048712381", 
              "https://doi.org/10.1007/bf01210926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01210926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048712381", 
              "https://doi.org/10.1007/bf01210926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-4371(96)00438-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051994268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.25.6805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060530841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.25.6805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060530841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.27.4445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060532337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.27.4445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060532337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.38.2009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060695988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.38.2009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060695988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.57.2999", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060794308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.57.2999", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060794308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.58.86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060795415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.58.86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060795415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aop/1176991155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064404052"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-01", 
        "datePublishedReg": "1999-01-01", 
        "description": "The q=2 random cluster model is studied in the context of two mean-field models: the Bethe lattice and the complete graph. For these systems, the critical exponents that are defined in terms of finite clusters have some anomalous values as the critical point is approached from the high-density side, which vindicates the results of earlier studies. In particular, the exponent \u03b3~\u2032 which characterizes the divergence of the average size of finite clusters is 1/2, and \u03bd~\u2032, the exponent associated with the length scale of finite clusters, is 1/4. The full collection of exponents indicates an upper critical dimension of 6. The standard mean field exponents of the Ising system are also present in this model (\u03bd\u2032=1/2, \u03b3\u2032=1), which implies, in particular, the presence of two diverging length-scales. Furthermore, the finite cluster exponents are stable to the addition of disorder, which, near the upper critical dimension, may have interesting implications concerning the generality of the disordered system/correlation length bounds.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1004555127906", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "94"
          }
        ], 
        "name": "Mean-Field Theory for Percolation Models of the Ising Type", 
        "pagination": "53-66", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "72ce12bc56b1531339116f12b7d49ce0bd56b2fb4e5cbdf568c05b36881f8f10"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1004555127906"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024097349"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1004555127906", 
          "https://app.dimensions.ai/details/publication/pub.1024097349"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000499.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1004555127906"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1004555127906'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1004555127906'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1004555127906'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1004555127906'


     

    This table displays all metadata directly associated to this object as RDF triples.

    121 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1004555127906 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N85b4f3f234174e5c831fb14e9a42631b
    4 schema:citation sg:pub.10.1007/bf01210926
    5 sg:pub.10.1007/bf01213683
    6 https://doi.org/10.1016/0031-8914(72)90045-6
    7 https://doi.org/10.1016/s0378-4371(96)00438-4
    8 https://doi.org/10.1103/physrevb.25.6805
    9 https://doi.org/10.1103/physrevb.27.4445
    10 https://doi.org/10.1103/physrevd.38.2009
    11 https://doi.org/10.1103/physrevlett.57.2999
    12 https://doi.org/10.1103/physrevlett.58.86
    13 https://doi.org/10.1214/aop/1176991155
    14 schema:datePublished 1999-01
    15 schema:datePublishedReg 1999-01-01
    16 schema:description The q=2 random cluster model is studied in the context of two mean-field models: the Bethe lattice and the complete graph. For these systems, the critical exponents that are defined in terms of finite clusters have some anomalous values as the critical point is approached from the high-density side, which vindicates the results of earlier studies. In particular, the exponent γ~′ which characterizes the divergence of the average size of finite clusters is 1/2, and ν~′, the exponent associated with the length scale of finite clusters, is 1/4. The full collection of exponents indicates an upper critical dimension of 6. The standard mean field exponents of the Ising system are also present in this model (ν′=1/2, γ′=1), which implies, in particular, the presence of two diverging length-scales. Furthermore, the finite cluster exponents are stable to the addition of disorder, which, near the upper critical dimension, may have interesting implications concerning the generality of the disordered system/correlation length bounds.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N49d91467470d4817b7ffd10f29b67bd1
    21 Naf16983417ec4d50a2fd912fcb93f9f9
    22 sg:journal.1040979
    23 schema:name Mean-Field Theory for Percolation Models of the Ising Type
    24 schema:pagination 53-66
    25 schema:productId N1409f1ea00224948aa085ecfedd0004f
    26 N6ecaa54dffd545209240155c130f2e46
    27 N840c6f1c49774f80a5e84258e765837d
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097349
    29 https://doi.org/10.1023/a:1004555127906
    30 schema:sdDatePublished 2019-04-10T17:28
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N59000e5262b94dd08af530e9e8adc0e9
    33 schema:url http://link.springer.com/10.1023/A:1004555127906
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N1409f1ea00224948aa085ecfedd0004f schema:name doi
    38 schema:value 10.1023/a:1004555127906
    39 rdf:type schema:PropertyValue
    40 N2d4f36129024450a8e6951280cf714b6 rdf:first sg:person.0664335332.34
    41 rdf:rest N489a1f27f4974d75bca05ac210e8c3f3
    42 N489a1f27f4974d75bca05ac210e8c3f3 rdf:first sg:person.01117455247.19
    43 rdf:rest rdf:nil
    44 N49d91467470d4817b7ffd10f29b67bd1 schema:volumeNumber 94
    45 rdf:type schema:PublicationVolume
    46 N59000e5262b94dd08af530e9e8adc0e9 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 N6ecaa54dffd545209240155c130f2e46 schema:name dimensions_id
    49 schema:value pub.1024097349
    50 rdf:type schema:PropertyValue
    51 N840c6f1c49774f80a5e84258e765837d schema:name readcube_id
    52 schema:value 72ce12bc56b1531339116f12b7d49ce0bd56b2fb4e5cbdf568c05b36881f8f10
    53 rdf:type schema:PropertyValue
    54 N85b4f3f234174e5c831fb14e9a42631b rdf:first sg:person.01361120400.70
    55 rdf:rest Ne419c47a186d436789f5be61cde2d4d8
    56 Naf16983417ec4d50a2fd912fcb93f9f9 schema:issueNumber 1-2
    57 rdf:type schema:PublicationIssue
    58 Ne419c47a186d436789f5be61cde2d4d8 rdf:first sg:person.01227217136.16
    59 rdf:rest N2d4f36129024450a8e6951280cf714b6
    60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Mathematical Sciences
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Statistics
    65 rdf:type schema:DefinedTerm
    66 sg:journal.1040979 schema:issn 0022-4715
    67 1572-9613
    68 schema:name Journal of Statistical Physics
    69 rdf:type schema:Periodical
    70 sg:person.01117455247.19 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
    71 schema:familyName Shtengel
    72 schema:givenName K.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117455247.19
    74 rdf:type schema:Person
    75 sg:person.01227217136.16 schema:affiliation https://www.grid.ac/institutes/grid.4691.a
    76 schema:familyName Coniglio
    77 schema:givenName A.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16
    79 rdf:type schema:Person
    80 sg:person.01361120400.70 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
    81 schema:familyName Chayes
    82 schema:givenName L.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361120400.70
    84 rdf:type schema:Person
    85 sg:person.0664335332.34 schema:affiliation https://www.grid.ac/institutes/grid.266683.f
    86 schema:familyName Machta
    87 schema:givenName J.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664335332.34
    89 rdf:type schema:Person
    90 sg:pub.10.1007/bf01210926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048712381
    91 https://doi.org/10.1007/bf01210926
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/bf01213683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045198786
    94 https://doi.org/10.1007/bf01213683
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1016/0031-8914(72)90045-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019367094
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1016/s0378-4371(96)00438-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051994268
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1103/physrevb.25.6805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060530841
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1103/physrevb.27.4445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060532337
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1103/physrevd.38.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060695988
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1103/physrevlett.57.2999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794308
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1103/physrevlett.58.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795415
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1214/aop/1176991155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404052
    111 rdf:type schema:CreativeWork
    112 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
    113 schema:name Department of Physics, University of California, 90095-1547, Los Angeles, California
    114 University of California, 90095-1555, Los Angeles, California
    115 rdf:type schema:Organization
    116 https://www.grid.ac/institutes/grid.266683.f schema:alternateName University of Massachusetts Amherst
    117 schema:name Department of Physics and Astronomy, University of Massachusetts, 01003-3720, Amherst, Massachusetts
    118 rdf:type schema:Organization
    119 https://www.grid.ac/institutes/grid.4691.a schema:alternateName University of Naples Federico II
    120 schema:name Dipartimento di Scienze Fisiche, Università “Federico II”, Mostra d'Oltremare Pad. 19, I-80125, Naples, Italy
    121 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...