Infinite Prandtl Number Convection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-01

AUTHORS

Peter Constantin, Charles R. Doering

ABSTRACT

We prove an inequality of the type N≤CR1/3(1+log+R)2/3 for the Nusselt number N in terms of the Rayleigh number R for the equations describing three-dimensional Rayleigh–Bénard convection in the limit of infinite Prandtl number.

PAGES

159-172

Journal

TITLE

Journal of Statistical Physics

ISSUE

1-2

VOLUME

94

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1004511312885

DOI

http://dx.doi.org/10.1023/a:1004511312885

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040346638


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chicago", 
          "id": "https://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "Department of Mathematics, University of Chicago, 60637, Chicago, Illinois"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Constantin", 
        "givenName": "Peter", 
        "id": "sg:person.01360651252.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360651252.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mathematics, University of Michigan, 48109, Ann Arbor, Michigan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doering", 
        "givenName": "Charles R.", 
        "id": "sg:person.01161117310.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-2789(94)00237-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016890517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112063001427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053893469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112063001427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053893469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/9/4/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059111016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.5870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.5870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476966"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-01", 
    "datePublishedReg": "1999-01-01", 
    "description": "We prove an inequality of the type N\u2264CR1/3(1+log+R)2/3 for the Nusselt number N in terms of the Rayleigh number R for the equations describing three-dimensional Rayleigh\u2013B\u00e9nard convection in the limit of infinite Prandtl number.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1004511312885", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "94"
      }
    ], 
    "name": "Infinite Prandtl Number Convection", 
    "pagination": "159-172", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c03190a15aab1378d5500fd42a1e93610bb3c1871b59556d1abd019a72d20458"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1004511312885"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040346638"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1004511312885", 
      "https://app.dimensions.ai/details/publication/pub.1040346638"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1004511312885"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1004511312885'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1004511312885'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1004511312885'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1004511312885'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      20 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1004511312885 schema:author Nb06039bdc2e04487a3c770864cfdf6fa
2 schema:citation https://doi.org/10.1016/0167-2789(94)00237-k
3 https://doi.org/10.1017/s0022112063001427
4 https://doi.org/10.1088/0951-7715/9/4/013
5 https://doi.org/10.1103/physreva.36.5870
6 schema:datePublished 1999-01
7 schema:datePublishedReg 1999-01-01
8 schema:description We prove an inequality of the type N≤CR1/3(1+log+R)2/3 for the Nusselt number N in terms of the Rayleigh number R for the equations describing three-dimensional Rayleigh–Bénard convection in the limit of infinite Prandtl number.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N7cbb5bd63d174a4794ff4cd889fbdf23
13 Nc4ac512c5ff84d1d94242971202cd307
14 sg:journal.1040979
15 schema:name Infinite Prandtl Number Convection
16 schema:pagination 159-172
17 schema:productId N493a006371a4466e9a580f5d928db0b7
18 N8f9e7d638b064fdc880ca5b94b372a6a
19 Nc27ac06423f549ac823d32c013526682
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040346638
21 https://doi.org/10.1023/a:1004511312885
22 schema:sdDatePublished 2019-04-10T20:44
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N4b2c8ff515074e50b9744958e1ea2472
25 schema:url http://link.springer.com/10.1023/A:1004511312885
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N493a006371a4466e9a580f5d928db0b7 schema:name dimensions_id
30 schema:value pub.1040346638
31 rdf:type schema:PropertyValue
32 N4b2c8ff515074e50b9744958e1ea2472 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N7cbb5bd63d174a4794ff4cd889fbdf23 schema:issueNumber 1-2
35 rdf:type schema:PublicationIssue
36 N8f9e7d638b064fdc880ca5b94b372a6a schema:name doi
37 schema:value 10.1023/a:1004511312885
38 rdf:type schema:PropertyValue
39 Nb06039bdc2e04487a3c770864cfdf6fa rdf:first sg:person.01360651252.70
40 rdf:rest Nd8a56ab4bbdb452982781fedc27343f2
41 Nc27ac06423f549ac823d32c013526682 schema:name readcube_id
42 schema:value c03190a15aab1378d5500fd42a1e93610bb3c1871b59556d1abd019a72d20458
43 rdf:type schema:PropertyValue
44 Nc4ac512c5ff84d1d94242971202cd307 schema:volumeNumber 94
45 rdf:type schema:PublicationVolume
46 Nd8a56ab4bbdb452982781fedc27343f2 rdf:first sg:person.01161117310.79
47 rdf:rest rdf:nil
48 sg:journal.1040979 schema:issn 0022-4715
49 1572-9613
50 schema:name Journal of Statistical Physics
51 rdf:type schema:Periodical
52 sg:person.01161117310.79 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
53 schema:familyName Doering
54 schema:givenName Charles R.
55 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79
56 rdf:type schema:Person
57 sg:person.01360651252.70 schema:affiliation https://www.grid.ac/institutes/grid.170205.1
58 schema:familyName Constantin
59 schema:givenName Peter
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360651252.70
61 rdf:type schema:Person
62 https://doi.org/10.1016/0167-2789(94)00237-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1016890517
63 rdf:type schema:CreativeWork
64 https://doi.org/10.1017/s0022112063001427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053893469
65 rdf:type schema:CreativeWork
66 https://doi.org/10.1088/0951-7715/9/4/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059111016
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1103/physreva.36.5870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060476966
69 rdf:type schema:CreativeWork
70 https://www.grid.ac/institutes/grid.170205.1 schema:alternateName University of Chicago
71 schema:name Department of Mathematics, University of Chicago, 60637, Chicago, Illinois
72 rdf:type schema:Organization
73 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
74 schema:name Department of Mathematics, University of Michigan, 48109, Ann Arbor, Michigan
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...