Ontology type: schema:ScholarlyArticle
2000-03
AUTHORS ABSTRACTFor estimation of functions involving only parameters of interest, in the presence of nuisance parameters, some optimality properties are established for partially sufficient (i.e. p-sufficient) statistics in two classes of regular probability models. The results are based on a characterization of regular unbiased estimating functions for parameters of interest in probability models for which a statistic exists such that its marginal distribution depends on unknown parameters only through the parameters of interest. More... »
PAGES173-183
http://scigraph.springernature.com/pub.10.1023/a:1004149318827
DOIhttp://dx.doi.org/10.1023/a:1004149318827
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1014964788
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Kentucky",
"id": "https://www.grid.ac/institutes/grid.266539.d",
"name": [
"Department of Statistics, College of Arts and Sciences, University of Kentucky, 40506-0027, Lexington, KY, U.S.A."
],
"type": "Organization"
},
"familyName": "Bhapkar",
"givenName": "Vasant P.",
"id": "sg:person.01050030110.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050030110.07"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/0378-3758(89)90001-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017643921"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/3315827",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024008703"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0378-3758(78)90017-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036991743"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0378-3758(91)90025-a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037185345"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01621459.1977.10480613",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058301842"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01621459.1977.10481002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058301884"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03610928708829467",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058333929"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03610929308831030",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058335487"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03610929508831532",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058335935"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/biomet/67.1.155",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059418926"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/biomet/70.3.607",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059419356"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/aoms/1177728191",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064401326"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/aos/1176342718",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064406940"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/ss/1177011232",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064409733"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1403095",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069473468"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/2336575",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069896161"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00773520",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086065594",
"https://doi.org/10.1007/bf00773520"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/lnms/1215455040",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086780872"
],
"type": "CreativeWork"
}
],
"datePublished": "2000-03",
"datePublishedReg": "2000-03-01",
"description": "For estimation of functions involving only parameters of interest, in the presence of nuisance parameters, some optimality properties are established for partially sufficient (i.e. p-sufficient) statistics in two classes of regular probability models. The results are based on a characterization of regular unbiased estimating functions for parameters of interest in probability models for which a statistic exists such that its marginal distribution depends on unknown parameters only through the parameters of interest.",
"genre": "research_article",
"id": "sg:pub.10.1023/a:1004149318827",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1041657",
"issn": [
"0020-3157",
"1572-9052"
],
"name": "Annals of the Institute of Statistical Mathematics",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "52"
}
],
"name": "On the Optimality of Estimators Based on P-Sufficient Statistics",
"pagination": "173-183",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"474c2bb8729ab74a97b03528c0ccd90ed2b6cfbe96352592bf5093218c5f7f55"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1004149318827"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1014964788"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1004149318827",
"https://app.dimensions.ai/details/publication/pub.1014964788"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T00:08",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000480.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1023/A:1004149318827"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1004149318827'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1004149318827'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1004149318827'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1004149318827'
This table displays all metadata directly associated to this object as RDF triples.
116 TRIPLES
21 PREDICATES
45 URIs
19 LITERALS
7 BLANK NODES