On the Optimality of Estimators Based on P-Sufficient Statistics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-03

AUTHORS

Vasant P. Bhapkar

ABSTRACT

For estimation of functions involving only parameters of interest, in the presence of nuisance parameters, some optimality properties are established for partially sufficient (i.e. p-sufficient) statistics in two classes of regular probability models. The results are based on a characterization of regular unbiased estimating functions for parameters of interest in probability models for which a statistic exists such that its marginal distribution depends on unknown parameters only through the parameters of interest. More... »

PAGES

173-183

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1004149318827

DOI

http://dx.doi.org/10.1023/a:1004149318827

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014964788


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Department of Statistics, College of Arts and Sciences, University of Kentucky, 40506-0027, Lexington, KY, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhapkar", 
        "givenName": "Vasant P.", 
        "id": "sg:person.01050030110.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050030110.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0378-3758(89)90001-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017643921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3315827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024008703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-3758(78)90017-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036991743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-3758(91)90025-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037185345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1977.10480613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1977.10481002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610928708829467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058333929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610929308831030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058335487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610929508831532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058335935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/67.1.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/70.3.607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177728191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176342718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177011232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069473468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2336575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069896161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00773520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086065594", 
          "https://doi.org/10.1007/bf00773520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/lnms/1215455040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086780872"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-03", 
    "datePublishedReg": "2000-03-01", 
    "description": "For estimation of functions involving only parameters of interest, in the presence of nuisance parameters, some optimality properties are established for partially sufficient (i.e. p-sufficient) statistics in two classes of regular probability models. The results are based on a characterization of regular unbiased estimating functions for parameters of interest in probability models for which a statistic exists such that its marginal distribution depends on unknown parameters only through the parameters of interest.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1004149318827", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041657", 
        "issn": [
          "0020-3157", 
          "1572-9052"
        ], 
        "name": "Annals of the Institute of Statistical Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "On the Optimality of Estimators Based on P-Sufficient Statistics", 
    "pagination": "173-183", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "474c2bb8729ab74a97b03528c0ccd90ed2b6cfbe96352592bf5093218c5f7f55"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1004149318827"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014964788"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1004149318827", 
      "https://app.dimensions.ai/details/publication/pub.1014964788"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1004149318827"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1004149318827'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1004149318827'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1004149318827'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1004149318827'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1004149318827 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N04bba1a6726c41e1b99ae3d682ef25c3
4 schema:citation sg:pub.10.1007/bf00773520
5 https://doi.org/10.1016/0378-3758(78)90017-4
6 https://doi.org/10.1016/0378-3758(89)90001-3
7 https://doi.org/10.1016/0378-3758(91)90025-a
8 https://doi.org/10.1080/01621459.1977.10480613
9 https://doi.org/10.1080/01621459.1977.10481002
10 https://doi.org/10.1080/03610928708829467
11 https://doi.org/10.1080/03610929308831030
12 https://doi.org/10.1080/03610929508831532
13 https://doi.org/10.1093/biomet/67.1.155
14 https://doi.org/10.1093/biomet/70.3.607
15 https://doi.org/10.1214/aoms/1177728191
16 https://doi.org/10.1214/aos/1176342718
17 https://doi.org/10.1214/lnms/1215455040
18 https://doi.org/10.1214/ss/1177011232
19 https://doi.org/10.2307/1403095
20 https://doi.org/10.2307/2336575
21 https://doi.org/10.2307/3315827
22 schema:datePublished 2000-03
23 schema:datePublishedReg 2000-03-01
24 schema:description For estimation of functions involving only parameters of interest, in the presence of nuisance parameters, some optimality properties are established for partially sufficient (i.e. p-sufficient) statistics in two classes of regular probability models. The results are based on a characterization of regular unbiased estimating functions for parameters of interest in probability models for which a statistic exists such that its marginal distribution depends on unknown parameters only through the parameters of interest.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N20b93a59be1e44e4a3d035ff1fbebf96
29 N971c46ef5b904e4b9abfe470ba1f0980
30 sg:journal.1041657
31 schema:name On the Optimality of Estimators Based on P-Sufficient Statistics
32 schema:pagination 173-183
33 schema:productId N15bd9fd9ffd14f3fa2ad1f0676bdd584
34 N7fea9754f7da422883d54334904e9f0c
35 Nc90923b25be541c8ad3786072213942a
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014964788
37 https://doi.org/10.1023/a:1004149318827
38 schema:sdDatePublished 2019-04-11T00:08
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N02b8e78f7dca4260bf809d8767d4ab92
41 schema:url http://link.springer.com/10.1023/A:1004149318827
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N02b8e78f7dca4260bf809d8767d4ab92 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N04bba1a6726c41e1b99ae3d682ef25c3 rdf:first sg:person.01050030110.07
48 rdf:rest rdf:nil
49 N15bd9fd9ffd14f3fa2ad1f0676bdd584 schema:name doi
50 schema:value 10.1023/a:1004149318827
51 rdf:type schema:PropertyValue
52 N20b93a59be1e44e4a3d035ff1fbebf96 schema:volumeNumber 52
53 rdf:type schema:PublicationVolume
54 N7fea9754f7da422883d54334904e9f0c schema:name dimensions_id
55 schema:value pub.1014964788
56 rdf:type schema:PropertyValue
57 N971c46ef5b904e4b9abfe470ba1f0980 schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 Nc90923b25be541c8ad3786072213942a schema:name readcube_id
60 schema:value 474c2bb8729ab74a97b03528c0ccd90ed2b6cfbe96352592bf5093218c5f7f55
61 rdf:type schema:PropertyValue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
66 schema:name Statistics
67 rdf:type schema:DefinedTerm
68 sg:journal.1041657 schema:issn 0020-3157
69 1572-9052
70 schema:name Annals of the Institute of Statistical Mathematics
71 rdf:type schema:Periodical
72 sg:person.01050030110.07 schema:affiliation https://www.grid.ac/institutes/grid.266539.d
73 schema:familyName Bhapkar
74 schema:givenName Vasant P.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050030110.07
76 rdf:type schema:Person
77 sg:pub.10.1007/bf00773520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086065594
78 https://doi.org/10.1007/bf00773520
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/0378-3758(78)90017-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036991743
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/0378-3758(89)90001-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017643921
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0378-3758(91)90025-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1037185345
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1080/01621459.1977.10480613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301842
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1080/01621459.1977.10481002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301884
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1080/03610928708829467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058333929
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1080/03610929308831030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058335487
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1080/03610929508831532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058335935
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1093/biomet/67.1.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418926
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1093/biomet/70.3.607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419356
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1214/aoms/1177728191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401326
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1214/aos/1176342718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406940
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1214/lnms/1215455040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086780872
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1214/ss/1177011232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409733
107 rdf:type schema:CreativeWork
108 https://doi.org/10.2307/1403095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473468
109 rdf:type schema:CreativeWork
110 https://doi.org/10.2307/2336575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069896161
111 rdf:type schema:CreativeWork
112 https://doi.org/10.2307/3315827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024008703
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.266539.d schema:alternateName University of Kentucky
115 schema:name Department of Statistics, College of Arts and Sciences, University of Kentucky, 40506-0027, Lexington, KY, U.S.A.
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...