Interpretation of Crown Radiation Temperatures of a Dense Douglas fir Forest with Similarity Theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-09

AUTHORS

Fred C. Bosveld, A. A. M. Holtslag, B. J. J. M. Van Den Hurk

ABSTRACT

Infrared crown radiation temperatures as observed over a dense Douglas fir forest are analyzed in the context of similarity theory and the concept of transport resistances. As such we obtain a rather high value of the roughness length for heat, which is about equal to the roughness length for momentum. This value can be explained by the more efficient transport of heat relative to momentum in the roughness sublayer of the forest. Correcting for this effect we arrive at the classic value for homogeneous terrain of about 0.1 times the roughness length for momentum. For unstable cases the presence of enhanced mixing of heat in the roughness sublayer leads to a modified integral stability function for the dimensionless potential temperature difference between the surface and the top of the roughness sublayer. The observations give some evidence for this different stability behaviour. The analysis suggests that during daytime the radiative surface temperature and the aerodynamic surface temperature are not significantly different when used to estimate fluxes. Daytime trunk space air temperature is satisfactory parameterized with the concept of gusts and with surface renewal analysis. As such it is related to the sensible heat flux and the storage heat flux. Night time radiation temperatures at times strongly deviate from the expected behaviour based on similarity theory and the roughness length for heat, suggesting that the concept of a single surface temperature is too simple for such cases. More... »

PAGES

429-451

References to SciGraph publications

  • 1989-04. Observation of organized structure in turbulent flow within and above a forest canopy in BOUNDARY-LAYER METEOROLOGY
  • 1989-11. Turbulent exchange above a pine forest II. Organized structures in BOUNDARY-LAYER METEOROLOGY
  • 1992-03. Regional surface fluxes from satellite-derived surface temperatures (AVHRR) and radiosonde profiles in BOUNDARY-LAYER METEOROLOGY
  • 1995-01. The effect of emissivity variation on surface temperature determined by infrared radiometry in BOUNDARY-LAYER METEOROLOGY
  • 1982. Evaporation into the Atmosphere, Theory, History and Applications in NONE
  • 1979-09. Anomalies in Flux-Gradient Relationships Over Forest in BOUNDARY-LAYER METEOROLOGY
  • 1990-08. Footprint prediction of scalar fluxes using a Markovian analysis in BOUNDARY-LAYER METEOROLOGY
  • 1997-07. Coherent eddies and temperature structure functions for three contrasting surfaces. Part II: Renewal model for sensible heat flux in BOUNDARY-LAYER METEOROLOGY
  • 1994-01. Source areas for scalars and scalar fluxes in BOUNDARY-LAYER METEOROLOGY
  • 1995-11. Relationship of surface heat flux to microscale temperature variations: Application to boreas in BOUNDARY-LAYER METEOROLOGY
  • 1998-04. The Validity of Similarity Theory in the Roughness Sublayer Above Forests in BOUNDARY-LAYER METEOROLOGY
  • 1997-08. DERIVATION OF FLUXES FROM PROFILES OVER A MODERATELY HOMOGENEOUS FOREST in BOUNDARY-LAYER METEOROLOGY
  • 1989-10. Turbulent exchange above a pine forest, I: Fluxes and gradients in BOUNDARY-LAYER METEOROLOGY
  • 1985. Flux-Gradient Relationships in a Forest Canopy in THE FOREST-ATMOSPHERE INTERACTION
  • 1995-05. A ‘Lagrangian’ revision of the resistors in the two-layer model for calculating the energy budget of a plant canopy in BOUNDARY-LAYER METEOROLOGY
  • 1996-03. Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy in BOUNDARY-LAYER METEOROLOGY
  • 1974-11. A review of flux-profile relationships in BOUNDARY-LAYER METEOROLOGY
  • 1986-07. Radiative surface temperature and energy balance of a wheat canopy in BOUNDARY-LAYER METEOROLOGY
  • 1993-03. Estimation of the sensible heat flux of a semi-arid area using surface radiative temperature measurements in BOUNDARY-LAYER METEOROLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1002087526720

    DOI

    http://dx.doi.org/10.1023/a:1002087526720

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022464456


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE, De Bilt, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.8653.8", 
              "name": [
                "Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE, De Bilt, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bosveld", 
            "givenName": "Fred C.", 
            "id": "sg:person.012533777727.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012533777727.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE, De Bilt, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.8653.8", 
              "name": [
                "Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE, De Bilt, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holtslag", 
            "givenName": "A. A. M.", 
            "id": "sg:person.01364752447.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364752447.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE, De Bilt, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.8653.8", 
              "name": [
                "Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE, De Bilt, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Den Hurk", 
            "givenName": "B. J. J. M.", 
            "id": "sg:person.010707714545.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1000342918158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048989888", 
              "https://doi.org/10.1023/a:1000342918158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00710460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027804179", 
              "https://doi.org/10.1007/bf00710460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00120941", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050121228", 
              "https://doi.org/10.1007/bf00120941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00240838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048893766", 
              "https://doi.org/10.1007/bf00240838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00836339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030519380", 
              "https://doi.org/10.1007/bf00836339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00122339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008366663", 
              "https://doi.org/10.1007/bf00122339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00117455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043634000", 
              "https://doi.org/10.1007/bf00117455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00709355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004079366", 
              "https://doi.org/10.1007/bf00709355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00122089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036727096", 
              "https://doi.org/10.1007/bf00122089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-5305-5_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041762247", 
              "https://doi.org/10.1007/978-94-009-5305-5_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1000809902980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001337698", 
              "https://doi.org/10.1023/a:1000809902980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00712121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014446515", 
              "https://doi.org/10.1007/bf00712121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00120972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050431035", 
              "https://doi.org/10.1007/bf00120972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-1497-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011445318", 
              "https://doi.org/10.1007/978-94-017-1497-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00120237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049740490", 
              "https://doi.org/10.1007/bf00120237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03335385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022461886", 
              "https://doi.org/10.1007/bf03335385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00116411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019538397", 
              "https://doi.org/10.1007/bf00116411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00713146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049310189", 
              "https://doi.org/10.1007/bf00713146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1000453629876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003815316", 
              "https://doi.org/10.1023/a:1000453629876"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-09", 
        "datePublishedReg": "1999-09-01", 
        "description": "Infrared crown radiation temperatures as observed over a dense Douglas fir forest are analyzed in the context of similarity theory and the concept of transport resistances. As such we obtain a rather high value of the roughness length for heat, which is about equal to the roughness length for momentum. This value can be explained by the more efficient transport of heat relative to momentum in the roughness sublayer of the forest. Correcting for this effect we arrive at the classic value for homogeneous terrain of about 0.1 times the roughness length for momentum. For unstable cases the presence of enhanced mixing of heat in the roughness sublayer leads to a modified integral stability function for the dimensionless potential temperature difference between the surface and the top of the roughness sublayer. The observations give some evidence for this different stability behaviour. The analysis suggests that during daytime the radiative surface temperature and the aerodynamic surface temperature are not significantly different when used to estimate fluxes. Daytime trunk space air temperature is satisfactory parameterized with the concept of gusts and with surface renewal analysis. As such it is related to the sensible heat flux and the storage heat flux. Night time radiation temperatures at times strongly deviate from the expected behaviour based on similarity theory and the roughness length for heat, suggesting that the concept of a single surface temperature is too simple for such cases.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1002087526720", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049385", 
            "issn": [
              "0006-8314", 
              "1573-1472"
            ], 
            "name": "Boundary-Layer Meteorology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "92"
          }
        ], 
        "keywords": [
          "roughness sublayer", 
          "roughness length", 
          "similarity theory", 
          "heat flux", 
          "space air temperature", 
          "storage heat flux", 
          "radiation temperature", 
          "surface temperature", 
          "surface renewal analysis", 
          "aerodynamic surface temperature", 
          "potential temperature difference", 
          "sensible heat flux", 
          "transport resistance", 
          "enhanced mixing", 
          "radiative surface temperature", 
          "homogeneous terrain", 
          "temperature difference", 
          "different stability behavior", 
          "single surface temperature", 
          "stability behavior", 
          "renewal analysis", 
          "heat", 
          "sublayer", 
          "temperature", 
          "unstable cases", 
          "stability function", 
          "air temperature", 
          "flux", 
          "efficient transport", 
          "gusts", 
          "higher values", 
          "classic values", 
          "mixing", 
          "momentum", 
          "behavior", 
          "surface", 
          "length", 
          "terrain", 
          "top", 
          "values", 
          "transport", 
          "resistance", 
          "concept", 
          "time", 
          "theory", 
          "analysis", 
          "effect", 
          "cases", 
          "daytime", 
          "observations", 
          "such cases", 
          "function", 
          "presence", 
          "Douglas-fir forests", 
          "differences", 
          "interpretation", 
          "forest", 
          "context", 
          "fir forests", 
          "evidence"
        ], 
        "name": "Interpretation of Crown Radiation Temperatures of a Dense Douglas fir Forest with Similarity Theory", 
        "pagination": "429-451", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022464456"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1002087526720"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1002087526720", 
          "https://app.dimensions.ai/details/publication/pub.1022464456"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_332.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1002087526720"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1002087526720'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1002087526720'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1002087526720'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1002087526720'


     

    This table displays all metadata directly associated to this object as RDF triples.

    207 TRIPLES      21 PREDICATES      104 URIs      77 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1002087526720 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author N89fb6cb51da54f50abc1226539e6319c
    4 schema:citation sg:pub.10.1007/978-94-009-5305-5_27
    5 sg:pub.10.1007/978-94-017-1497-6
    6 sg:pub.10.1007/bf00116411
    7 sg:pub.10.1007/bf00117455
    8 sg:pub.10.1007/bf00120237
    9 sg:pub.10.1007/bf00120941
    10 sg:pub.10.1007/bf00120972
    11 sg:pub.10.1007/bf00122089
    12 sg:pub.10.1007/bf00122339
    13 sg:pub.10.1007/bf00240838
    14 sg:pub.10.1007/bf00709355
    15 sg:pub.10.1007/bf00710460
    16 sg:pub.10.1007/bf00712121
    17 sg:pub.10.1007/bf00713146
    18 sg:pub.10.1007/bf00836339
    19 sg:pub.10.1007/bf03335385
    20 sg:pub.10.1023/a:1000342918158
    21 sg:pub.10.1023/a:1000453629876
    22 sg:pub.10.1023/a:1000809902980
    23 schema:datePublished 1999-09
    24 schema:datePublishedReg 1999-09-01
    25 schema:description Infrared crown radiation temperatures as observed over a dense Douglas fir forest are analyzed in the context of similarity theory and the concept of transport resistances. As such we obtain a rather high value of the roughness length for heat, which is about equal to the roughness length for momentum. This value can be explained by the more efficient transport of heat relative to momentum in the roughness sublayer of the forest. Correcting for this effect we arrive at the classic value for homogeneous terrain of about 0.1 times the roughness length for momentum. For unstable cases the presence of enhanced mixing of heat in the roughness sublayer leads to a modified integral stability function for the dimensionless potential temperature difference between the surface and the top of the roughness sublayer. The observations give some evidence for this different stability behaviour. The analysis suggests that during daytime the radiative surface temperature and the aerodynamic surface temperature are not significantly different when used to estimate fluxes. Daytime trunk space air temperature is satisfactory parameterized with the concept of gusts and with surface renewal analysis. As such it is related to the sensible heat flux and the storage heat flux. Night time radiation temperatures at times strongly deviate from the expected behaviour based on similarity theory and the roughness length for heat, suggesting that the concept of a single surface temperature is too simple for such cases.
    26 schema:genre article
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N1d92de39c2054aa1ab56d96061b54aa3
    29 N6b8ce7cce674450c900957a17d0bc55c
    30 sg:journal.1049385
    31 schema:keywords Douglas-fir forests
    32 aerodynamic surface temperature
    33 air temperature
    34 analysis
    35 behavior
    36 cases
    37 classic values
    38 concept
    39 context
    40 daytime
    41 differences
    42 different stability behavior
    43 effect
    44 efficient transport
    45 enhanced mixing
    46 evidence
    47 fir forests
    48 flux
    49 forest
    50 function
    51 gusts
    52 heat
    53 heat flux
    54 higher values
    55 homogeneous terrain
    56 interpretation
    57 length
    58 mixing
    59 momentum
    60 observations
    61 potential temperature difference
    62 presence
    63 radiation temperature
    64 radiative surface temperature
    65 renewal analysis
    66 resistance
    67 roughness length
    68 roughness sublayer
    69 sensible heat flux
    70 similarity theory
    71 single surface temperature
    72 space air temperature
    73 stability behavior
    74 stability function
    75 storage heat flux
    76 sublayer
    77 such cases
    78 surface
    79 surface renewal analysis
    80 surface temperature
    81 temperature
    82 temperature difference
    83 terrain
    84 theory
    85 time
    86 top
    87 transport
    88 transport resistance
    89 unstable cases
    90 values
    91 schema:name Interpretation of Crown Radiation Temperatures of a Dense Douglas fir Forest with Similarity Theory
    92 schema:pagination 429-451
    93 schema:productId N27eb75e744a647228c4b5d12ee286fe4
    94 N8ea817909e5b4875ad3ed70230e537cd
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022464456
    96 https://doi.org/10.1023/a:1002087526720
    97 schema:sdDatePublished 2022-10-01T06:31
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher Nf8a5dee6fcbd48d6bb6b102a56239bba
    100 schema:url https://doi.org/10.1023/a:1002087526720
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N1d92de39c2054aa1ab56d96061b54aa3 schema:issueNumber 3
    105 rdf:type schema:PublicationIssue
    106 N27eb75e744a647228c4b5d12ee286fe4 schema:name dimensions_id
    107 schema:value pub.1022464456
    108 rdf:type schema:PropertyValue
    109 N5cce3987c08b46b69ce06b70ab1d3201 rdf:first sg:person.010707714545.84
    110 rdf:rest rdf:nil
    111 N6b8ce7cce674450c900957a17d0bc55c schema:volumeNumber 92
    112 rdf:type schema:PublicationVolume
    113 N89fb6cb51da54f50abc1226539e6319c rdf:first sg:person.012533777727.23
    114 rdf:rest Nb82b8dfb972a44849a879d33cc1b37c0
    115 N8ea817909e5b4875ad3ed70230e537cd schema:name doi
    116 schema:value 10.1023/a:1002087526720
    117 rdf:type schema:PropertyValue
    118 Nb82b8dfb972a44849a879d33cc1b37c0 rdf:first sg:person.01364752447.13
    119 rdf:rest N5cce3987c08b46b69ce06b70ab1d3201
    120 Nf8a5dee6fcbd48d6bb6b102a56239bba schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Earth Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Atmospheric Sciences
    127 rdf:type schema:DefinedTerm
    128 sg:journal.1049385 schema:issn 0006-8314
    129 1573-1472
    130 schema:name Boundary-Layer Meteorology
    131 schema:publisher Springer Nature
    132 rdf:type schema:Periodical
    133 sg:person.010707714545.84 schema:affiliation grid-institutes:grid.8653.8
    134 schema:familyName Van Den Hurk
    135 schema:givenName B. J. J. M.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84
    137 rdf:type schema:Person
    138 sg:person.012533777727.23 schema:affiliation grid-institutes:grid.8653.8
    139 schema:familyName Bosveld
    140 schema:givenName Fred C.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012533777727.23
    142 rdf:type schema:Person
    143 sg:person.01364752447.13 schema:affiliation grid-institutes:grid.8653.8
    144 schema:familyName Holtslag
    145 schema:givenName A. A. M.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364752447.13
    147 rdf:type schema:Person
    148 sg:pub.10.1007/978-94-009-5305-5_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041762247
    149 https://doi.org/10.1007/978-94-009-5305-5_27
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/978-94-017-1497-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011445318
    152 https://doi.org/10.1007/978-94-017-1497-6
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf00116411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019538397
    155 https://doi.org/10.1007/bf00116411
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/bf00117455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043634000
    158 https://doi.org/10.1007/bf00117455
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/bf00120237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049740490
    161 https://doi.org/10.1007/bf00120237
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/bf00120941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050121228
    164 https://doi.org/10.1007/bf00120941
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/bf00120972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050431035
    167 https://doi.org/10.1007/bf00120972
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/bf00122089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036727096
    170 https://doi.org/10.1007/bf00122089
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/bf00122339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008366663
    173 https://doi.org/10.1007/bf00122339
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/bf00240838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048893766
    176 https://doi.org/10.1007/bf00240838
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/bf00709355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004079366
    179 https://doi.org/10.1007/bf00709355
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/bf00710460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027804179
    182 https://doi.org/10.1007/bf00710460
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/bf00712121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014446515
    185 https://doi.org/10.1007/bf00712121
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/bf00713146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049310189
    188 https://doi.org/10.1007/bf00713146
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/bf00836339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030519380
    191 https://doi.org/10.1007/bf00836339
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/bf03335385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022461886
    194 https://doi.org/10.1007/bf03335385
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1023/a:1000342918158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048989888
    197 https://doi.org/10.1023/a:1000342918158
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1023/a:1000453629876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003815316
    200 https://doi.org/10.1023/a:1000453629876
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1023/a:1000809902980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001337698
    203 https://doi.org/10.1023/a:1000809902980
    204 rdf:type schema:CreativeWork
    205 grid-institutes:grid.8653.8 schema:alternateName Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE, De Bilt, The Netherlands
    206 schema:name Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE, De Bilt, The Netherlands
    207 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...