Nighttime convection in the interior of a dense Douglas fir forest View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-11

AUTHORS

Fred C. Bosveld, A.A. M. Holtslag, B.J. J.M. Van Den Hurk

ABSTRACT

Infrared radiative surface temperatures as observed over a dense Douglas fir forest during stable atmospheric conditions are analyzed. It is shown that the concept of a single surface temperature to describe both the thermal coupling and the radiative coupling between atmosphere and forest fails when longwave cooling is large and wind speeds are low. In such cases a decoupling of the radiative surface temperature from the air temperature aloft is observed. Conditions for decoupling are formulated in terms of an appropriate Richardson number. It is shown that a convective surface temperature comes into play that is coupled to the forest interior air temperature. Observed radiative surface temperature is then composed of this convective surface temperature and the aerodynamic surface temperature. Forest interior air temperature during nighttime is, in general, lower than air temperature above the canopy. A simple two-layer canopy model is used to explain this phenomenon in terms of the distribution of atmospheric sensible heat flux and storage heat flux over the two canopy layers. More... »

PAGES

171-195

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1002039610790

DOI

http://dx.doi.org/10.1023/a:1002039610790

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019803210


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute (KNMI), 201, Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute (KNMI), 201, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bosveld", 
        "givenName": "Fred C.", 
        "id": "sg:person.012533777727.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012533777727.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute (KNMI), 201, Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute (KNMI), 201, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holtslag", 
        "givenName": "A.A. M.", 
        "id": "sg:person.01364752447.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364752447.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute (KNMI), 201, Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute (KNMI), 201, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Den Hurk", 
        "givenName": "B.J. J.M.", 
        "id": "sg:person.010707714545.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-017-1497-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011445318", 
          "https://doi.org/10.1007/978-94-017-1497-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00121712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009519795", 
          "https://doi.org/10.1007/bf00121712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-5305-5_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041762247", 
          "https://doi.org/10.1007/978-94-009-5305-5_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00713146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049310189", 
          "https://doi.org/10.1007/bf00713146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00122089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036727096", 
          "https://doi.org/10.1007/bf00122089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00712176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048361160", 
          "https://doi.org/10.1007/bf00712176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03335385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022461886", 
          "https://doi.org/10.1007/bf03335385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1002087526720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022464456", 
          "https://doi.org/10.1023/a:1002087526720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1000453629876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003815316", 
          "https://doi.org/10.1023/a:1000453629876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00709355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004079366", 
          "https://doi.org/10.1007/bf00709355"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-11", 
    "datePublishedReg": "1999-11-01", 
    "description": "Infrared radiative surface temperatures as observed over a dense Douglas fir forest during stable atmospheric conditions are analyzed. It is shown that the concept of a single surface temperature to describe both the thermal coupling and the radiative coupling between atmosphere and forest fails when longwave cooling is large and wind speeds are low. In such cases a decoupling of the radiative surface temperature from the air temperature aloft is observed. Conditions for decoupling are formulated in terms of an appropriate Richardson number. It is shown that a convective surface temperature comes into play that is coupled to the forest interior air temperature. Observed radiative surface temperature is then composed of this convective surface temperature and the aerodynamic surface temperature. Forest interior air temperature during nighttime is, in general, lower than air temperature above the canopy. A simple two-layer canopy model is used to explain this phenomenon in terms of the distribution of atmospheric sensible heat flux and storage heat flux over the two canopy layers.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1002039610790", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049385", 
        "issn": [
          "0006-8314", 
          "1573-1472"
        ], 
        "name": "Boundary-Layer Meteorology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "93"
      }
    ], 
    "keywords": [
      "interior air temperature", 
      "radiative surface temperature", 
      "heat flux", 
      "surface temperature", 
      "storage heat flux", 
      "appropriate Richardson number", 
      "air temperature", 
      "aerodynamic surface temperature", 
      "atmospheric sensible heat flux", 
      "Richardson number", 
      "sensible heat flux", 
      "thermal coupling", 
      "two-layer canopy model", 
      "stable atmospheric conditions", 
      "single surface temperature", 
      "nighttime convection", 
      "wind speed", 
      "canopy model", 
      "atmospheric conditions", 
      "temperature", 
      "longwave cooling", 
      "canopy layer", 
      "flux", 
      "convection", 
      "radiative coupling", 
      "cooling", 
      "decoupling", 
      "layer", 
      "speed", 
      "conditions", 
      "coupling", 
      "atmosphere", 
      "terms", 
      "phenomenon", 
      "interior", 
      "distribution", 
      "nighttime", 
      "model", 
      "canopy", 
      "concept", 
      "such cases", 
      "number", 
      "cases", 
      "Douglas-fir forests", 
      "forest", 
      "play", 
      "fir forests"
    ], 
    "name": "Nighttime convection in the interior of a dense Douglas fir forest", 
    "pagination": "171-195", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019803210"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1002039610790"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1002039610790", 
      "https://app.dimensions.ai/details/publication/pub.1019803210"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_324.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1002039610790"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1002039610790'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1002039610790'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1002039610790'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1002039610790'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      82 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1002039610790 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nb595a411666c4efe8e46c498a6677427
4 schema:citation sg:pub.10.1007/978-94-009-5305-5_27
5 sg:pub.10.1007/978-94-017-1497-6
6 sg:pub.10.1007/bf00121712
7 sg:pub.10.1007/bf00122089
8 sg:pub.10.1007/bf00709355
9 sg:pub.10.1007/bf00712176
10 sg:pub.10.1007/bf00713146
11 sg:pub.10.1007/bf03335385
12 sg:pub.10.1023/a:1000453629876
13 sg:pub.10.1023/a:1002087526720
14 schema:datePublished 1999-11
15 schema:datePublishedReg 1999-11-01
16 schema:description Infrared radiative surface temperatures as observed over a dense Douglas fir forest during stable atmospheric conditions are analyzed. It is shown that the concept of a single surface temperature to describe both the thermal coupling and the radiative coupling between atmosphere and forest fails when longwave cooling is large and wind speeds are low. In such cases a decoupling of the radiative surface temperature from the air temperature aloft is observed. Conditions for decoupling are formulated in terms of an appropriate Richardson number. It is shown that a convective surface temperature comes into play that is coupled to the forest interior air temperature. Observed radiative surface temperature is then composed of this convective surface temperature and the aerodynamic surface temperature. Forest interior air temperature during nighttime is, in general, lower than air temperature above the canopy. A simple two-layer canopy model is used to explain this phenomenon in terms of the distribution of atmospheric sensible heat flux and storage heat flux over the two canopy layers.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N2a0e4f7991d846239afa6e0db4f71fc9
20 N41fde348e0e6451d9ecb306313e4492f
21 sg:journal.1049385
22 schema:keywords Douglas-fir forests
23 Richardson number
24 aerodynamic surface temperature
25 air temperature
26 appropriate Richardson number
27 atmosphere
28 atmospheric conditions
29 atmospheric sensible heat flux
30 canopy
31 canopy layer
32 canopy model
33 cases
34 concept
35 conditions
36 convection
37 cooling
38 coupling
39 decoupling
40 distribution
41 fir forests
42 flux
43 forest
44 heat flux
45 interior
46 interior air temperature
47 layer
48 longwave cooling
49 model
50 nighttime
51 nighttime convection
52 number
53 phenomenon
54 play
55 radiative coupling
56 radiative surface temperature
57 sensible heat flux
58 single surface temperature
59 speed
60 stable atmospheric conditions
61 storage heat flux
62 such cases
63 surface temperature
64 temperature
65 terms
66 thermal coupling
67 two-layer canopy model
68 wind speed
69 schema:name Nighttime convection in the interior of a dense Douglas fir forest
70 schema:pagination 171-195
71 schema:productId N81302c26c2db4150a8288f0fe3b0dc5a
72 Nc980fcca34194a529d47c8ac1d048302
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019803210
74 https://doi.org/10.1023/a:1002039610790
75 schema:sdDatePublished 2022-10-01T06:31
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N2c794aabcea64ee8be9a74dc4125a8c6
78 schema:url https://doi.org/10.1023/a:1002039610790
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N2a0e4f7991d846239afa6e0db4f71fc9 schema:issueNumber 2
83 rdf:type schema:PublicationIssue
84 N2c794aabcea64ee8be9a74dc4125a8c6 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N2ff4b2e2d3bd4f25bfd9e6a0ef47bd01 rdf:first sg:person.010707714545.84
87 rdf:rest rdf:nil
88 N41fde348e0e6451d9ecb306313e4492f schema:volumeNumber 93
89 rdf:type schema:PublicationVolume
90 N81302c26c2db4150a8288f0fe3b0dc5a schema:name doi
91 schema:value 10.1023/a:1002039610790
92 rdf:type schema:PropertyValue
93 Nb2a60537fe0242a486a1ac897f1d4e85 rdf:first sg:person.01364752447.13
94 rdf:rest N2ff4b2e2d3bd4f25bfd9e6a0ef47bd01
95 Nb595a411666c4efe8e46c498a6677427 rdf:first sg:person.012533777727.23
96 rdf:rest Nb2a60537fe0242a486a1ac897f1d4e85
97 Nc980fcca34194a529d47c8ac1d048302 schema:name dimensions_id
98 schema:value pub.1019803210
99 rdf:type schema:PropertyValue
100 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
101 schema:name Earth Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
104 schema:name Atmospheric Sciences
105 rdf:type schema:DefinedTerm
106 sg:journal.1049385 schema:issn 0006-8314
107 1573-1472
108 schema:name Boundary-Layer Meteorology
109 schema:publisher Springer Nature
110 rdf:type schema:Periodical
111 sg:person.010707714545.84 schema:affiliation grid-institutes:grid.8653.8
112 schema:familyName Van Den Hurk
113 schema:givenName B.J. J.M.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84
115 rdf:type schema:Person
116 sg:person.012533777727.23 schema:affiliation grid-institutes:grid.8653.8
117 schema:familyName Bosveld
118 schema:givenName Fred C.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012533777727.23
120 rdf:type schema:Person
121 sg:person.01364752447.13 schema:affiliation grid-institutes:grid.8653.8
122 schema:familyName Holtslag
123 schema:givenName A.A. M.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364752447.13
125 rdf:type schema:Person
126 sg:pub.10.1007/978-94-009-5305-5_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041762247
127 https://doi.org/10.1007/978-94-009-5305-5_27
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/978-94-017-1497-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011445318
130 https://doi.org/10.1007/978-94-017-1497-6
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf00121712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009519795
133 https://doi.org/10.1007/bf00121712
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf00122089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036727096
136 https://doi.org/10.1007/bf00122089
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/bf00709355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004079366
139 https://doi.org/10.1007/bf00709355
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/bf00712176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048361160
142 https://doi.org/10.1007/bf00712176
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/bf00713146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049310189
145 https://doi.org/10.1007/bf00713146
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/bf03335385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022461886
148 https://doi.org/10.1007/bf03335385
149 rdf:type schema:CreativeWork
150 sg:pub.10.1023/a:1000453629876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003815316
151 https://doi.org/10.1023/a:1000453629876
152 rdf:type schema:CreativeWork
153 sg:pub.10.1023/a:1002087526720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022464456
154 https://doi.org/10.1023/a:1002087526720
155 rdf:type schema:CreativeWork
156 grid-institutes:grid.8653.8 schema:alternateName Royal Netherlands Meteorological Institute (KNMI), 201, Netherlands
157 schema:name Royal Netherlands Meteorological Institute (KNMI), 201, Netherlands
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...